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Classification and regression
Trees (CART)



Tree-based methods

• Tree-based methods are nonparametric methods that recursively
partition the feature space into hyper-rectangular subsets, and
make prediction on each subset.

• Two main streams of models:
– Classification and regression Trees (CART): Breiman, Friedman,

Olshen and Stone (1984)

– ID3/C4.5: Quinlan, 1986, 1993.

• Both are among the top algorithms in data mining (Wu et al.,
2008)

• In statistical literature, CART is more popular.
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Titanic Survivals
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Classification and regression Trees

• How tree works in classification? (We will formally introduce
classification problems later)

• Example: independent x1 and x2 from uniform [−1, 1], 90% to
observed class 1 (blue) within the circle x2

1 + x2
2 < 0.6, and 90%

to observed class 2 (orange) outside the circle.

• All existing classification methods that we have introduced
require either transformation of the space (SVM) or distance
measure (kNN, kernel)

• Tree solves this by directly cutting the feature space using a
binary splitting rule in the form of 1{x ≤ c}
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Example

• rpart is one of the popular packages that provide CART fitting
and plot

• Other choices include tree , party .

• Read the reference manual carefully!!!

1 > l i b r a r y ( r p a r t )
2 > x1 = r u n i f (500 , −1 , 1)
3 > x2 = r u n i f (500 , −1 , 1)
4 > y = rbinom (500 , s ize = 1 , prob = i f e l s e ( x1 ˆ2 + x2 ˆ2 < 0.6 , 0 .9 , 0 .1 ) )
5 > c a r t . f i t = r p a r t ( as . f a c t o r ( y )~x1+x2 , data = data . frame ( x1 , x2 , y ) )
6 > p l o t ( c a r t . f i t )
7 > t e x t ( c a r t . f i t )
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Example

|x2< −0.6444

x1>=0.6941

x2>=0.7484

x1< −0.6903

x2>=0.3801
x1>=0.532

x1< −0.4283

0

0

0

0

0
0 1

1
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Why tree-based methods?

• Tree-based methods: non-parametric, flexible model structure

• Can handel high-dimensional data without modifying the
algorithm (CART may not work well in this setting)

• Single tree model — simple decision rules, interpretable

• Ensemble tree model — high prediction accuracy
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Single tree methods: recursive partitioning

• How tree-based methods work?
• Initialized the root node: all training data

• Find a splitting rule 1{X(j) ≤ c} and split the node

• Recursively apply the procedure on each daughter node

• Predict each terminal node using within-node data

Root node

1{X(j) ≤ c}Splitting rule

Internal T1

Age ≤ 45 YesNo

T2 T3

Female YesNo
f̂(x), for x ∈ T1

f̂(x), for x ∈ T2 f̂(x), for x ∈ T3
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Classification and regression Trees

• How to construct the splitting rules?

• For classification problems
– continuous predictors

– categorical predictors

• For regression problems

• Tree pruning

15/50



Splitting rules for continuous predictors

• Splitting of continuous predictors are in the form of 1{X(j) ≤ c}

• Consider a node T , we want to split this node into two child
nodes.

• We first evaluate the overall impurity of T by the Gini index
(CART), assuming that there are K different classes of the
outcome, 1, . . . ,K,

Gini(T ) =

K∑
k=1

p̂k(1− p̂k) = 1−
K∑

k=1

p̂2k

where p̂k =
∑

i 1{yi=k}1{xi∈T }∑
i 1{xi∈T } is the within node frequency of

class k.
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Impurity Measures

• Now propose a split: 1{X(j) ≤ c}.

• This separates all subjects in the node into two disjoint parts: TL
and TR

• For each child node, we can again evaluate Impurity(TL) and
Impurity(TR)

• The reduction of impurity is measured by

score = Gini(T )−
(
NTL

NT
Gini(TL) +

NTR

NT
Gini(TR)

)
,

where NTL
, NTR

and NT are the sample size for the
corresponding node.

• Go through all variables j and all cutting points c to find the split
with the best score

• Using rpart or tree , the magnitude of this score is reflected by
the hight of each split (plot in page 13) 17/50



Other Measures

• Gini index is not the only measurement

• Shannon entropy (ID3/C4.5)

Entropy(T ) = −
K∑

k=1

p̂k log(p̂k)

• Similarly, we can use Shannon entropy to define the reduction of
impurity and search for the best splitting rule

• There are other differences between C4.5 and CART, for
example, C4.5 can create multiple child nodes from one node.

• Misclassification error

Error(T ) = 1− max
k=1,...,K

p̂k
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Comparing Measures

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
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0.
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0.
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1.
0
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y
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Gini
Error
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Comparing Measures

Class 1 Class 2 p̂1 p̂2 Gini Entropy Error
T 7 3 7/10 3/10 0.420 0.611 0.3
Tleft 3 0 3/3 0 0 0 0
Tright 4 3 4/7 3/7 0.490 0.683 3/7

scoreGini = 0.420− (3/10 · 0 + 7/10 · 0.490) = 0.077

scoreEntropy = 0.611− (3/10 · 0 + 7/10 · 0.683) = 0.133

scoreError = 3/10− (3/10 · 0 + 7/10 · 3/7) = 0
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Comparing Measures

• Gini index and Shannon Entropy are more sensitive to the
changes in the node probability

• They prefer to create more “pure” nodes

• Misclassification error can be used for evaluating a tree, but may
not be sensitive enough for building the tree.
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Categorical Predictors

• For categorical predictor X(j) talking values in {1, . . . ,M}, we
search for a subset A of {1, . . . ,M}, and evaluate the child
nodes created by the splitting rule

1{X(j) ∈ A}

• Maximum of 2M−1 − 1 number of possible splits

• When M is too large, this can be computationally intense.

• Some heuristic methods are used, such as randomly sample a
subset of categories to one child node, and compare several
random splits.

22/50



Tree for Regressions

• When the outcomes yi’s are continuous, all we need is a
corresponding impurity measure and score

• Consider the weighted variance reduction:

scoreVar = Var(T )−
(
NTL

NT
Var(TL) +

NTR

NT
Var(TR)

)
where for any node T , Var(T ) is just the variance of the node
samples:

Var(T ) =
1

NT

∑
i∈T

(yi − yT )
2
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Overfitting and Tree Pruning

• A large tree (with many splits) can easily overfit the data

• Small tree may not capture important structures

• Tree size is measured by the number of splits

• Balancing tree size and accuracy is the same as the “loss +
penalty” framework

• One possible approach is to split tree nodes only if the decrease
in the loss exceed certain threshold, however this can be
short-sighted

• A better approach is to grow a large tree, then prune it
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Cost-Complexity Pruning

• Fit the entire tree Tmax (possibly one observation per terminal
node). Specify a complexity parameter α.

• For any sub-tree of Tmax, denoted as T ⪯ Tmax, calculate

Cα(T ) =
∑

all terminal nodes t in T

Nt · Impurity(t) + α|T |

= C(T ) + α|T |

where Nt is the number of observations in t, |T | is the size of T ,
i.e., the number of terminal nodes

• Find T that minimize the Cα(T )

• Large α results in small trees

• Choose α using CV
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Cost-Complexity Pruning

• We do not need to exhausting all possible sub-trees of Tmax

(computationally intense)

• Weakest-link cutting is used to find the best sub-tree:
• Look at an internal node t of Tmax, and denote the entire branch

starting from t as Tt

• Compare: remove the entire branch (collapse Tt into a single
terminal node) vs. keep Tt

α ≤ C(t)− C(Tt)

|Tt| − 1

• Cut the branch that has the smallest value on the right hand side
(the smallest α), then iterate

• Will provide a solution path of α (from smallest to largest).
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Missing Values

• If each variable has 5% chance have missing value, then with 50
variables, there are only 7.7% of the samples that has compete
measures.

• Traditional approach is to discard observations with missing
values, or impute them

• Tree-based method can handle them by either putting them as a
separate category, or using surrogate variables whenever the
splitting variable is missing.
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Remark

• Advantages of tree-based method:
• handles both categorical and continuous variables in a simple and

natural way

• Invariant under all monotone transformations of variables

• Robust to outliers

• Flexible model structure, capture iterations, easy to interpret

• Limitations
• Small changes in the data can result in a very different series of

splits

• Non-smooth. Some other techniques such as the multivariate
adaptive regression splines (MARS, Friedman 1991) can be used
to generate smoothed models.
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Random Forests



Weak and Strong Learners

• Back in the mid-late 90’s, researches started to investigate
whether aggregated “weak learners” (unstable, less accurate)
can be a “strong learner”.

• Bagging, boosting, and random forests are all methods along this
line.

• Bagging and random forests learn individual trees with some
random perturbations, and “average” them.

• Boosting progressively learn models with small magnitude, then
“add” them

• In general, Boosting, Random Forests ≻ Bagging ≻ Single Tree.
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Bagging Predictors

• Bagging stands for “Bootstrap aggregating”

• Draw M bootstrap samples from the training dataset, fit CART to
each, then average

• Motivation: CART is unstable as we discussed earlier, however,
perturbing and averaging can improve stability and leads to
better accuracy
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Ensemble of trees

Dn

Bootstrap 1 Bootstrap 2 . . . Bootstrap B−1 Bootstrap B

f̂1(x) f̂2(x)

. . .

f̂B−1(x) f̂B(x)

f̂(x)
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Bagging Predictors

• Bootstrap sample with replacement: some observations can be
repeated multiple times. ∼ 63.2% unique samples

• Fit a CART model to each bootstrap sample (may require tuning
using CV).

• To combine each learner, for classification problems:

f̂bag(x) = Majority Vote
{
f̂b(x)

}B

b=1
,

and for regression problems:

f̂bag(x) =
1

B

B∑
b=1

f̂b(x),

• Dramatically reduce the variance of individual learners

• CART can be replaced by other weak learners
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CART vs. Bagging
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CART vs. Bagging
Elements of Statistical Learning (2nd Ed.) c©Hastie, Tibshirani & Friedman 2009 Chap 8
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FIGURE 8.10. Error curves for the bagging example
of Figure 8.9. Shown is the test error of the original
tree and bagged trees as a function of the number of
bootstrap samples. The orange points correspond to the
consensus vote, while the green points average the prob-
abilities.
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Remarks about Bagging

• Bagging can dramatically reduce the variance of unstable “weak
learners” like trees, leading to improved prediction

• The simple structure of trees will be lost due to bagging, hence it
is not easy to interpret

• However, the performance of bagging is oftentimes not
satisfactory. Why?

• Different trees have high correlation which makes averaging not
very effective

• How to de-correlate trees?
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Random Forests

• Several articles came out in the late 90’s discussing the
advantages of using random features.

• “The Random Subspace Method for Constructing Decision
Forests” by Ho (1998) greatly influenced Breiman’s idea of
random forests

• In Ho’s method, each tree is constructed using a randomly
selected subset of features

• Random forests take a step forward: each splitting rule only
consider a random subset
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Tuning parameters: mtry

• An important tuning parameter of random forests is mtry

• At each split, randomly select mtry variables from the entire set
of features {1, . . . , p}

• Search the best variable and splitting point out of these mtry

variables

• Split and proceed to child nodes

• This procedure turns out working remarkably well, even in
high-dimensional data
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Tuning parameters: nmin

• Another important tuning parameter is nmin (terminal node size)

• Random forests does not perform pruning anymore

• Instead, splitting does not stop until the terminal node size is less
or equal to nmin, and the entire tree is used.

• nmin controls the trade-off between bias and variance in each
tree

• In the most extreme case, nmin = 1 means exactly fit each
observation, but this is not 1-NN!

• Lin and Jeon (2004) formulate random forests as “potential
nearest neighbor” (a much larger neighborhood than kNN)
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Tuning parameters

• A summary of important tuning parameters in Random forests
(using R package randomForest )

– ntree : number of trees, set it to be large. Default 500.

– mtry : number of variables considered at each split. Default p/3
for regression,

√
p for classification.

– nodesize : terminal node size, same as nmin. Default 5 for
regression, 1 for classification

• Overall, tuning is quite crucial in random forests
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CART vs. Bagging vs. RF
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CART vs. RF in regression

CART RF

Model patients’ length of stay (LOS) in hospital: Diagnosis
(categorical) and Age (continuous)
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Variable Importance

• There is a build-in feature called variable importance that utilize
the samples not selected by bootstrapping (out-of-bag data):

• For each tree m, use the out-of-bag data as the testing set to
obtain the prediction error: Errm0

• For each variable j, randomly permute its value among the testing
samples, and recalculate the prediction error: Errmj

• calculate for each j

VImj =
Errmj
Errm0

− 1

• Average VImj across all trees (index m) to get the importance of
each variable VI·j
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Variable Importance

• In many practice areas, random forests variable importance
measure is used extensively

• Usually the misclassification error is used instead of Gini index

• Higher VI means larger loss of accuracy due to the loss of
information on X(j), hence more important.
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Variable Importance in RF

x1 x4 x7 x11 x15 x19 x23 x27 x31 x35 x39 x43 x47

0
5

10

Same simulation setting as the “circle” example, with additional 48
noise variables. 44/50



Additional Developments

• Random splitting point: Instead of searching through all possible
cuts, we can just generate several random cutting points and
choose the best among them (extremely randomized trees,
Geurts et al., 2006). This is computationally much faster,
especially for large dataset.

• Linear combination split: at each split, a linear combination βTX

is created and used as the splitting rule 1{βTX ≤ c}. The β

estimations can be searched by a ridge regression (oblique
random forests, Menze et al., 2011)
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Kernel View of RF

• Denote A = {Ak}k∈K the collection of all terminal nodes in a
single tree, where K is a set of indices.

• Then, for any target point x0, if x0 falls into the a terminal node A,
we would predict its outcome by node averaging:

f̂(x0) =

∑n
i=1 1{xi ∈ A} yi∑n
i=1 1{xi ∈ A}

• Note that there is a slight difference from the traditional RF, which
is to average the node first than average over trees.
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Kernel View of RF

• Instead, we can define a random forest kernel:

A(xi, x0) =
∑

k∈K 1{xi ∈ Ak}1{x0 ∈ Ak}

=

{
1 if ∃A ∈ A s.t. xi, x0 ∈ A

0 o.w.

• Then f̂(x0) can be expressed in the N-W kernel estimator form:

f̂(x0) =

∑n
i=1 A(xi, x0) yi∑n
i=1 A(xi, x0)

• We can extend this to the forest version by stacking the kernels

• However, A(·, ·) is not invariant to location shift.

47/50



Kernel View of RF
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Adaptiveness of RF kernel

• Random Forests is a kernel method with adaptive bandwidth:
• Each tree in a forests defines a kernel: uniform within each

terminal node

• Ensemble: sum of kernels is still a kernel

• A tree is “more likely” to split on important variables, making their
“bandwidth” smaller

• If the splitting variables are selected wisely, the bandwidth is
adaptive to the signal strength

• The cutting point is more likely to happen on the curvature of the
underlying target function

• In a high-dimensional sparse model, random forests performs
better (both theoretically and practically) than those non-adaptive
local methods
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Theoretical Cutting Points

Theoretical cutting points on a function (Ishwaran 2015) prefer places
with steepest derivative.

Mach Learn (2015) 99:75–118 83

Fig. 2 Theoretical split-points for X under weighted variance splitting (displayed using vertical gray lines)
for f (x) = 2x3 − 2x2 − x (in black) assuming a uniform [−3, 3] distribution for X

split-points ŝN for splits on X are displayed in Fig. 3 and closely track the theoretical splits
of Fig. 2. Thus, our results extrapolate to higher dimensions and also illustrate closeness of
ŝN to the population value s∞. ��

The near-exactness of the split-points of Figs. 2 and 3 is a direct consequence of Theorem 2.
To see why, note that with some rearrangement, (7) becomes

�t (s) = (s − a)

⎛

⎝
q∑

j=0

A j s
j

⎞

⎠
2

+ (b − s)

⎛

⎝
q∑

j=0

B j s
j

⎞

⎠
2

,

where A j , B j are constants that depend on a and b. Therefore �t is a polynomial. Hence it
will achieve a global maximum over t or over a sufficiently small subregion t ′.

To further amplify this point, Fig. 4 illustrates how �t ′(s) depends on t ′ for f (x) of
Example 2. The first subpanel displays �t (s) over the entire range t = [−3, 3]. Clearly
it achieves a global maximum. Furthermore, when [−3, 3] is broken up into contiguous
subregions t ′, �t ′(s) becomes nearly concave (last three panels) and its maximum becomes
more pronounced. Theorem 2 applies to each of these subregions, guaranteeing ŝN converges
to s∞ over them.

2.3 Split-points for more general functions

The contiguous regions in Fig. 4 (panels 3,4 and 5) were chosen to match the stationary points
of �t (see panel 2). Stationary points identify points of inflection and maxima of �t and thus
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