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Outline

• From Linear to Nonlinear Methods

• Piecewise Polynomials and Splines

• Smoothing Splines
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Linear vs. Nonlinear Models

• For most of our lectures up to now, we focused on linear models.
Why?

• Convenient and easy to fit

• Easy to interpret

• A relatively good approximation to the underlying truth

• When n is small and/or p is large, linear models tend not to overfit

• Nonlinear models are more flexible and may lead to better fitting
to reduce bias

• The concept in this lecture is mainly about nonlinear model fitting
of a univariate function.
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Linear vs. Nonlinear Models

• Univariate functions has many applications. They can be
assembled to approximate multivariate functions.

• Example: Additive Model assumes that a model has the form

f(x) =

p∑
j=1

fj(xj)

• This allows some more flexibility since fj does not need to be
βjxj — a linear function of xj

• For the most part in this lecture, we will focus on how to estimate
the functions fj ’s, which are univariate functions of xj ’s.
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Linear vs. Nonlinear Models

• In particular, we consider a linear basis expansion of fj , i.e.,

fj(x) =

Mj∑
m=1

βjmhmj(xj)

• hmj are called the basis functions

• hmj could be different for each covariate xj .

• For simplicity, since we only deal with one covariate, we drop the
index j, and focus on

f(x) =

M∑
m=1

βmhm(x)
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Linear vs. Nonlinear Models

• Once we have determined the basis functions hm, the model is
again linear (just not in the original covariates)

• Some typical choices of h
• hm(x) = x: the original linear model

• hm(x) = x2, x3, . . .: polynomials

• hm(x) = log(x),
√
x, . . .: other nonlinear transformations

• hm(x) = 1{Lm < x < Um}: indicator for a region of X
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Linear vs. Nonlinear Models

• The approach is straight forward:
• Find a collection of M basis functions (we will introduce several

choices), and calculate the hm(xi) values of each subject i on
these basis.

• Then, for each observation i, treat
(
h1(xi), h2(xi), . . . , hM (xi)

)T as
the observed covariate of xi

• This allows us to construct a new design matrix with dimension
n×M .

• We then fit a linear regression based on these M variables
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Piecewise Polynomials and
Splines



Piecewise Polynomials

• For example, consider the piecewise constant:

h1(x) = 1{x < ξ1}, h2(x) = 1{ξ1 ≤ x < ξ2}, h3(x) = 1{ξ2 ≤ x}

• ξ1 and ξ2 are called knots

• Hence the model becomes

f(x) =

3∑
i=1

βmhm(x)

• This is essentially fitting a constant function at each region, so
βm = Y m, where Y m is just the mean of the mth region.

• This is similar to a regression tree model (introduced later).
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Piecewise Polynomials

• We can also fit a linear function at each region by considering
three additional basis functions:

h4(x) = x1{x < ξ1}
h5(x) = x1{ξ1 ≤ x < ξ2}
h6(x) = x1{ξ2 ≤ x}

• This leads to piecewise linear models
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Piecewise Polynomials

Example: birthrate data, 1917 to 2003
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Continuous Piecewise Polynomials

• However, the fitted functions are not continuous.

• We might want some restrictions on the parameter estimates to
force continuity.

• For example, a continuous piecewise linear function requires

f(ξ−k ) = f(ξ+k )

at all knots ξk.

• For our previous example, this implies

β1 + ξ1β4 = β2 + ξ1β5

and β2 + ξ2β5 = β3 + ξ2β6
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Continuous Piecewise Polynomials
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Continuous Piecewise Polynomials

• For the piecewise linear model, we have a total of 6 basis. Hence
the degrees of freedom is 6 (keep in mind that we fit a linear
model once these basis are constructed).

• Because of the two constrains, for the continuous piecewise
linear, there are only 4 degrees of freedom

• However, fitting constrained linear regression is “complicated”,
hence not preferred.
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Continuous Piecewise Polynomials

• A trick is to incorporate the constrains into the basis functions
(we define an equivalent set of basis that achieves the same
property):

h1(x) = 1

h2(x) = x

h3(x) = (x− ξ1)+

h4(x) = (x− ξ2)+

where (·)+ denotes the positive part.

• Note that this definition of basis has only 4 elements.

• All we need is to properly define the basis.
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Continuous Piecewise Polynomials
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Continuous Piecewise Polynomials

• We can then check that any linear combination of these four
functions lead to

• Continuous everywhere

• Linear everywhere except the knots

• Has a different slope for each region

• This can be easily done using R function bs in the package
splines .
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Cubic Splines

• We can extend this idea to obtain higher order of smoothness

• A common choice is the cubic spline, which uses cubic functions
within each region

• However, continuities of the first and second order at the knots
are forced

• This can be done again using the tricks, similarly to the previous
example
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Cubic Splines

• Cubic spline function with K knots:

f(x) = β0 + β1x+ β2x
2 + β3x

3 +

K∑
k=1

bk(x− ξk)
3
+

• This leads to a total of (4 + # knots) degrees of freedom

• The (third order) knot discontinuity is not really visible
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Degrees of Freedom

• For cubic spline, we initially requires 4 degrees of freedom to
describe each region (1, x, x2 and x3)

• With the constrains, we require the two regional functions that
joint at a knot has the same value up to the second derivative:

f(ξ−) = f(ξ+)

f ′(ξ−) = f ′(ξ+)

f ′′(ξ−) = f ′′(ξ+)

• Hence, the degrees of freedom for a cubic spline:

(# regions)× (4per region)− (# knots)× (3 constraints per knot)

• Note that # regions = # knots + 1, this becomes (4 + # knots)
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B-spline Basis

• Previous definitions of splines are known as regression splines

• An alternative definition (computationally more efficient) is
proposed by de Boor (1978)

• Each basis function is nonzero over at most

degree of the polynomial + 1

consecutive intervals.

• The resulting design matrix is banded
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B-spline Basis
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Define B-spline Basis

• Create augmented knot sequence τ :

τ1 = · · · = τM = ξ0

τM+j = ξj , j = 1, . . . ,K

τM+K+1 = · · · = τ2M+K+1 = ξK+1

• where ξj ’s, j = 1, . . . ,K are the knots

• ξ0 and ξK+1 are the left and right boundary points
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Define B-spline Basis

• Denote Bi,m(x) the ith B-spline basis function of order m for the
knot sequence τ , m ≤ M . We recursively calculate them as
follows:

Bi,1(x) =

{
1 if τi ≤ x < τi+1

0 o.w.

Bi,m(x) =
x− τi

τi+m−1 − τi
Bi,m−1(x) +

τi+m − x

τi+m − τi+1
Bi+1,m−1(x)
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Generating B-spline Basis in R

1 > l i b r a r y ( sp l i nes )
2 > bs ( x , d f = NULL, knots = NULL, degree = 3 , i n t e r c e p t = FALSE)

• df : degrees of freedom (the total number of basis)

• knots : specify knots. By default, these will be the quantiles of x

• degree : degree of piecewise polynomial, default 3 (cubic splines)

• intercept : if TRUE , an intercept is included, default FALSE

• Always return a matrix of dimension n× df (this may force a
change of other parameters)
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Natural Cubic Splines

• Polynomials fit to data tend to be erratic near the boundaries.
Extrapolation can be dangerous.

• Natural Cubic Splines (NCS) forces the second and third
derivatives to be zero at the boundaries, i.e., min(x) and max(x)

• Hence, the fitted model is linear beyond the two extreme knots
(−∞, ξ1] and [ξK ,∞)

• The constraints frees up 4 degrees of freedom. The degrees of
freedom of NCS is just the number of knots K.

• Assuming linearity near the boundary is reasonable since there
is less information available
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Extrapolating beyond the boundaries

Example: Birthrate data, 1917-2003
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Comparing Variation of Different Choices

Elements of Statistical Learning (2nd Ed.) c©Hastie, Tibshirani & Friedman 2009 Chap 5
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Global Cubic Polynomial
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FIGURE 5.3. Pointwise variance curves for four dif-
ferent models, with X consisting of 50 points drawn at
random from U [0, 1], and an assumed error model with
constant variance. The linear and cubic polynomial fits
have two and four degrees of freedom, respectively, while
the cubic spline and natural cubic spline each have six
degrees of freedom. The cubic spline has two knots at
0.33 and 0.66, while the natural spline has boundary
knots at 0.1 and 0.9, and four interior knots uniformly
spaced between them.
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Natural Cubic Splines

• Basis function construction for natural cubic splines

• Starting with a basis for cubic splines, and derive the reduced
bases by imposing the boundary constraint, we obtain the basis
functions

N1(x) = 1, N2(x) = x, Nk+2(x) = dk(x)− dK−1(x)

where

dk(x) =
(x− ξk)

3
+ − (x− ξK)3+
ξK − ξk

, k = 1, . . . ,K − 2

• We can check that each of the basis functions has zero second
and third derivatives for x ≤ ξ1 and x ≥ ξK
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NCS Basis
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Generating Natural Cubic Spline basis in R

1 > l i b r a r y ( sp l i nes )
2 > ns ( x , d f = NULL, knots = NULL, i n t e r c e p t = FALSE)

• df : degrees of freedom (the total number of basis)

• knots : specify knots. By default, these will be the quantiles of x

• intercept : if TRUE , an intercept is included, default FALSE

• Return a matrix of dimension n× df
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Smoothing Splines



Smoothing Splines

• B-splines and NCS are both methods that construct a p×M

basis matrix F (p is the number of variables; p = 1 in our previous
examples), and then model the outcome using a linear
regression on F.

• Inevitably, we need to select the order of the spline, the number
of knots (AIC, BIC, CV) and even the location of knots (difficult)

• Is there a method that we can select the number and location of
knots automatically?
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Smoothing Splines

• Smoothing Spline: Let’s start with an easy but “horrible” solution,
by putting knots at all the observed data points (x1, . . . xn):

yn×1 = Fn×nβn×1

Instead of selecting knots, let’s use ridge-type shrinkage

minimizeβ ∥y − Fβ∥2 + λβTΩβ

where Ω will be defined later and λ can be chosen by CV or GCV.

• In fact, the solution can be derived from a different aspect
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Roughness Penalty Approach

• Let W2[a, b] be the space of all smooth functions defined on [a, b]

• Second order Sobolev space

W2[a, b] =
{
g : g, g′ are absolutely continuous and

∫ b

a

[g′′]2dx < ∞
}

• Global polynomial functions and cubic spline functions belong to
W2[a, b].

• W2[a, b] is an infinite-dimension function space

• Find the “best” function in W2[a, b] to approximate f
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Roughness Penalty Approach

• Penalized residual sum of squares

RSS(g, λ) =
1

n

n∑
i=1

(
yi − g(xi)

)2
+ λ

∫ b

a

[g′′(x)]2dx

• First term measure the closeness of the model to the data

• Second term penalizes the roughness/curvature of the function

• Avoid the knot selection problem

•
∫ b

a
[g′′(x)]2dx is called the roughness penalty
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Roughness Penalty Approach

• λ is the smoothing parameter that controls the bias-variance
trade-off

• λ = 0: interpolate the data, overfitting

• λ = ∞: linear least-squares regression

• It turns out that the solution to the penalized residual sum of
squares has to be a NCS

Theorem
ĝ = argmin RSS(g, λ) is a NCS with knots at the n data points
x1, . . . , xn
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Proof

Intuition: Let g be a function on [a, b] and g̃ be a NCS with

g(xi) = g̃(xi), i = 1, . . . , n.

We can always find such g̃ since it consists of n basis. Then we can
show ∫

g′′2dx ≥
∫

g̃′′2dx,

meaning that we will always prefer the g̃, the NCS “representation” of
g, since the penalty is smaller, and the loss doesn’t change.
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Proof

Its only left to show that ∫
g′′2dx ≥

∫
g̃′′2dx.

We define h(x) = g(x)− g̃(x). So h(xi) = 0 for i = 1, . . . , n. Then∫
g′′2dx =

∫
g̃′′2dx+

∫
h′′2dx+ 2

∫
g̃′′h′′dx

and (WLOG assuming xi’s are ordered)∫
g̃′′h′′dx = g̃′′h′∣∣b

a
−
∫ b

a

h′g̃(3)dx

= −
n−1∑
i=1

g̃(3)(x+
j )

∫ xj+1

xj

h′dx
(
g̃(3)constant piecewise

)
= −

n−1∑
i=1

g̃(3)(x+
j )

(
h(xj+1)− h(xj)

)
= 0

(
h(xj) = 0

) 37/50



Proof

• Hence the solution has to have a finite representation

ĝ(x) =

n∑
j=1

βjNj(x)

where Nj ’s are a set of natural cubic spline basis functions with
knots at each of the unique x values

• We can then rewrite

n∑
i=1

(
yi − g(xi)

)2
= (y − Fβ)T(y − Fβ)

where F is an n× n matrix with Fij = Nj(xi)
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Proof

• The penalty function∫ b

a

g′′2dx =

∫ (∑
i

βiN
′′
i (x)

)2
dx

=
∑
i,j

βiβj

∫
N ′′

i (x)N
′′
j (x)dx

= βTΩβ

where Ω is an n× n matrix with Ωij =
∫
N ′′

i (x)N
′′
j (x)dx.
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Proof

• Hence our goal is to find β that minimizes

RSS(β, λ) = ∥y − Fβ∥2 + λβTΩβ

• This is a ridge penalized function and the solution is

β̂ =argmin
β

RSS(β, λ)

=(FTF+ λΩ)−1FTy

• The smoothing spline version of the “hat” matrix is called the
smoother matrix

f̂ = F(FTF+ λΩ)−1FTy

= Sλy
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Remark

• We have done the analysis of degrees of freedom for ridge type
regression. The degrees of freedom of a smoothing spline is

df = Trace(Sλ)

which ranges between 0 and n.

• Under some special constructions (Demmler and Reinsch,
1975), a basis with double orthogonality property, can lead to

FTF = I, and Ω is diagonal

which gives exact solution of β (see our ridge lecture notes).
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Remark

• Choosing the penalty λ is the same as ridge regression

• Leave-one-out CV:

CV =
1

n

n∑
i=1

(
yi − ĝ(xi)

1− Sλ(i, i)

)2

• Generalized CV:

GCV =
1

n

n∑
i=1

(
yi − ĝ(xi)

1− 1
nTrace(Sλ)

)2
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Smoothing Splines in R

1 > l i b r a r y ( sp l i nes )
2 > smooth . s p l i n e ( x , y = NULL, w = NULL, df , cv = FALSE)

• cv : FALSE uses GCV, TRUE uses Leave-one-out CV

• df : degrees of freedom between 1 and n, let GCV decide it
automatically

• w : can be used if x has replicates
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Generalized Additive Models



Generalized Additive Models

• Additive models assume that the conational expectation of Y is

f(x) = α+

p∑
j=1

fj(xj)

• This can be extended to modeling Y ’s with other distributions.
Such as binary, counts, positive values, etc.

• Generalized Additive Models (GAM) assume that

E(Y |X) = g−1(α+

p∑
j=1

fj(xj))

• In logistic regression, we used logit link for g

• We fit each fj using a cubic smoothing spline or kernel smoother

g(E(Y |X)) = α+

p∑
j=1

fj(xj) 44/50



Generalized Additive Models

• Logistic regression

logit(P(Y = 1|X)) = α+

p∑
j=1

fj(xj)

• Poisson regression

log(E(Y |X)) = α+

p∑
j=1

fj(xj)

• · · ·
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Fitting Additive Models

• y = α+
∑p

j=1 fj(xj) + ϵ

• Initialize
– Constant α = average response

– All fj = 0

• Cycle
– Fit one component at a time to residuals from the other

components using a smoother

– Normalize most recent component to average to 0

– Stop when all components average within desired accuracy
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Backfitting Algorithm

• Consider using general smoothers as building blocks to fit the
model

• Initialize α̂ = y, f̂j = 0

• Iterate (backfitting) until f̂j ’s stabilize:

f̂j = Sj(y − α̂−
∑
j′ ̸=j

f̂j′)

f̂j = f̂j −
1

n

n∑
i=1

f̂j(xij)

where Sj denotes a smoothing spline fit.
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Fitting Generalized Additive Models

• We cannot update the response values by subtract the current
fitting values

• Use Iteratively Reweighted Least Squares (see previous lecture
on logistic regression)

• Initialize α̂ = log[y/(1− y)], f̂j = 0

• Define η̂i = α̂+
∑

j f̂j(xij) and p̂i = 1/[1 + exp(−η̂i)]

– Calculate the working target variable zi = η̂i +
yi−p̂i

p̂i(1−p̂i)

– Construct weights wi = p̂i(1− p̂i)

– Fit additive model to targets zi with weight wi using a weighted
backfitting algorithm

• Stop when converged within specified accuracy
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R implementation

• Package: mgcv , function gam

• The gam solves the smoothing parameter estimation problem by
using the Generalized Cross Validation (GCV) criterion

1 > l i b r a r y (gam)
2 > form = formula ( ” chd ~ ns ( sbp , d f =4) + ns ( tobacco , d f =4) +
3 > ns ( l d l , d f =4) + famhis t + ns ( obes i ty , d f =4)

+
4 > ns ( a lcoho l , d f =4) + ns ( age , d f =4) ” )
5 > m = gam( form , data=SAheart , f a m i l y =b inomia l )
6 > summary (m)
7 > par ( mfrow = c (3 , 3) , mar = c (5 , 5 , 2 , 0) )
8 > p l o t (m, se = TRUE, r e s i d u a l s = TRUE, pch = 19 , co l = ” darkorange ” )
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Example: South African Heart Disease
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