STAT 542: Statistical Learning

Splines

Ruoqing Zhu, Ph.D. rqzhu@illinois.edu
Course Website: https://teazrq.github.io/stat542/
February 20, 2022

Department of Statistics
University of Illinois at Urbana-Champaign

Outline

- From Linear to Nonlinear Methods
- Piecewise Polynomials and Splines
- Smoothing Splines

Linear vs. Nonlinear Models

- For most of our lectures up to now, we focused on linear models. Why?
- Convenient and easy to fit
- Easy to interpret
- A relatively good approximation to the underlying truth
- When n is small and/or p is large, linear models tend not to overfit
- Nonlinear models are more flexible and may lead to better fitting to reduce bias
- The concept in this lecture is mainly about nonlinear model fitting of a univariate function.

Linear vs. Nonlinear Models

- Univariate functions has many applications. They can be assembled to approximate multivariate functions.
- Example: Additive Model assumes that a model has the form

$$
f(x)=\sum_{j=1}^{p} f_{j}\left(x_{j}\right)
$$

- This allows some more flexibility since f_{j} does not need to be $\beta_{j} x_{j}$ - a linear function of x_{j}
- For the most part in this lecture, we will focus on how to estimate the functions f_{j} 's, which are univariate functions of x_{j} 's.

Linear vs. Nonlinear Models

- In particular, we consider a linear basis expansion of f_{j}, i.e.,

$$
f_{j}(x)=\sum_{m=1}^{M_{j}} \beta_{j m} h_{m j}\left(x_{j}\right)
$$

- $h_{m j}$ are called the basis functions
- $h_{m j}$ could be different for each covariate x_{j}.
- For simplicity, since we only deal with one covariate, we drop the index j, and focus on

$$
f(x)=\sum_{m=1}^{M} \beta_{m} h_{m}(x)
$$

Linear vs. Nonlinear Models

- Once we have determined the basis functions h_{m}, the model is again linear (just not in the original covariates)
- Some typical choices of h
- $h_{m}(x)=x$: the original linear model
- $h_{m}(x)=x^{2}, x^{3}, \ldots$: polynomials
- $h_{m}(x)=\log (x), \sqrt{x}, \ldots$: other nonlinear transformations
- $h_{m}(x)=\mathbf{1}\left\{L_{m}<x<U_{m}\right\}$: indicator for a region of X

Linear vs. Nonlinear Models

- The approach is straight forward:
- Find a collection of M basis functions (we will introduce several choices), and calculate the $h_{m}\left(x_{i}\right)$ values of each subject i on these basis.
- Then, for each observation i, treat $\left(h_{1}\left(x_{i}\right), h_{2}\left(x_{i}\right), \ldots, h_{M}\left(x_{i}\right)\right)^{\top}$ as the observed covariate of x_{i}
- This allows us to construct a new design matrix with dimension $n \times M$.
- We then fit a linear regression based on these M variables

Piecewise Polynomials and Splines

Piecewise Polynomials

- For example, consider the piecewise constant:

$$
h_{1}(x)=\mathbf{1}\left\{x<\xi_{1}\right\}, \quad h_{2}(x)=\mathbf{1}\left\{\xi_{1} \leq x<\xi_{2}\right\}, \quad h_{3}(x)=\mathbf{1}\left\{\xi_{2} \leq x\right\}
$$

- ξ_{1} and ξ_{2} are called knots
- Hence the model becomes

$$
f(x)=\sum_{i=1}^{3} \beta_{m} h_{m}(x)
$$

- This is essentially fitting a constant function at each region, so $\beta_{m}=\bar{Y}_{m}$, where \bar{Y}_{m} is just the mean of the m th region.
- This is similar to a regression tree model (introduced later).

Piecewise Polynomials

- We can also fit a linear function at each region by considering three additional basis functions:

$$
\begin{aligned}
& h_{4}(x)=x \mathbf{1}\left\{x<\xi_{1}\right\} \\
& h_{5}(x)=x \mathbf{1}\left\{\xi_{1} \leq x<\xi_{2}\right\} \\
& h_{6}(x)=x \mathbf{1}\left\{\xi_{2} \leq x\right\}
\end{aligned}
$$

- This leads to piecewise linear models

Piecewise Polynomials

Continuous Piecewise Polynomials

- However, the fitted functions are not continuous.
- We might want some restrictions on the parameter estimates to force continuity.
- For example, a continuous piecewise linear function requires

$$
f\left(\xi_{k}^{-}\right)=f\left(\xi_{k}^{+}\right)
$$

at all knots ξ_{k}.

- For our previous example, this implies

$$
\begin{aligned}
& \beta_{1}+\xi_{1} \beta_{4}=\beta_{2}+\xi_{1} \beta_{5} \\
\text { and } & \beta_{2}+\xi_{2} \beta_{5}=\beta_{3}+\xi_{2} \beta_{6}
\end{aligned}
$$

Continuous Piecewise Polynomials

Continuous Piecewise Polynomials

- For the piecewise linear model, we have a total of 6 basis. Hence the degrees of freedom is 6 (keep in mind that we fit a linear model once these basis are constructed).
- Because of the two constrains, for the continuous piecewise linear, there are only 4 degrees of freedom
- However, fitting constrained linear regression is "complicated", hence not preferred.

Continuous Piecewise Polynomials

- A trick is to incorporate the constrains into the basis functions (we define an equivalent set of basis that achieves the same property):

$$
\begin{aligned}
& h_{1}(x)=1 \\
& h_{2}(x)=x \\
& h_{3}(x)=\left(x-\xi_{1}\right)_{+} \\
& h_{4}(x)=\left(x-\xi_{2}\right)_{+}
\end{aligned}
$$

where $(\cdot)^{+}$denotes the positive part.

- Note that this definition of basis has only 4 elements.
- All we need is to properly define the basis.

Continuous Piecewise Polynomials

Continuous Piecewise Polynomials

- We can then check that any linear combination of these four functions lead to
- Continuous everywhere
- Linear everywhere except the knots
- Has a different slope for each region
- This can be easily done using R function bs in the package splines.

Cubic Splines

- We can extend this idea to obtain higher order of smoothness
- A common choice is the cubic spline, which uses cubic functions within each region
- However, continuities of the first and second order at the knots are forced
- This can be done again using the tricks, similarly to the previous example

Cubic Splines

- Cubic spline function with K knots:

$$
f(x)=\beta_{0}+\beta_{1} x+\beta_{2} x^{2}+\beta_{3} x^{3}+\sum_{k=1}^{K} b_{k}\left(x-\xi_{k}\right)_{+}^{3}
$$

- This leads to a total of ($4+\#$ knots) degrees of freedom
- The (third order) knot discontinuity is not really visible

Degrees of Freedom

- For cubic spline, we initially requires 4 degrees of freedom to describe each region ($1, x, x^{2}$ and x^{3})
- With the constrains, we require the two regional functions that joint at a knot has the same value up to the second derivative:

$$
\begin{array}{r}
f\left(\xi^{-}\right)=f\left(\xi^{+}\right) \\
f^{\prime}\left(\xi^{-}\right)=f^{\prime}\left(\xi^{+}\right) \\
f^{\prime \prime}\left(\xi^{-}\right)=f^{\prime \prime}\left(\xi^{+}\right)
\end{array}
$$

- Hence, the degrees of freedom for a cubic spline:
$(\#$ regions $) \times(4$ per region $)-(\#$ knots $) \times(3$ constraints per knot $)$
- Note that $\#$ regions $=$ \#knots +1 , this becomes $(4+\#$ knots $)$

B-spline Basis

- Previous definitions of splines are known as regression splines
- An alternative definition (computationally more efficient) is proposed by de Boor (1978)
- Each basis function is nonzero over at most
degree of the polynomial +1
consecutive intervals.
- The resulting design matrix is banded

B-spline Basis

degree $=0$

degree $=1$

degree $=3$

Define B-spline Basis

- Create augmented knot sequence τ :

$$
\begin{aligned}
& \tau_{1}=\cdots=\tau_{M}=\xi_{0} \\
& \tau_{M+j}=\xi_{j}, \quad j=1, \ldots, K \\
& \tau_{M+K+1}=\cdots=\tau_{2 M+K+1}=\xi_{K+1}
\end{aligned}
$$

- where ξ_{j} 's, $j=1, \ldots, K$ are the knots
- ξ_{0} and ξ_{K+1} are the left and right boundary points

Define B-spline Basis

- Denote $B_{i, m}(x)$ the i th B-spline basis function of order m for the knot sequence $\tau, m \leq M$. We recursively calculate them as follows:

$$
B_{i, 1}(x)= \begin{cases}1 & \text { if } \quad \tau_{i} \leq x<\tau_{i+1} \\ 0 & \text { o.w. }\end{cases}
$$

$$
B_{i, m}(x)=\frac{x-\tau_{i}}{\tau_{i+m-1}-\tau_{i}} B_{i, m-1}(x)+\frac{\tau_{i+m}-x}{\tau_{i+m}-\tau_{i+1}} B_{i+1, m-1}(x)
$$

Generating B-spline Basis in R

```
> library(splines)
> bs(x, df = NULL, knots = NULL, degree = 3, intercept = FALSE)
```

- df: degrees of freedom (the total number of basis)
- knots : specify knots. By default, these will be the quantiles of x
- degree : degree of piecewise polynomial, default 3 (cubic splines)
- intercept: if TRUE, an intercept is included, default FALSE
- Always return a matrix of dimension $n \times$ df (this may force a change of other parameters)

Natural Cubic Splines

- Polynomials fit to data tend to be erratic near the boundaries. Extrapolation can be dangerous.
- Natural Cubic Splines (NCS) forces the second and third derivatives to be zero at the boundaries, i.e., $\min (x)$ and $\max (x)$
- Hence, the fitted model is linear beyond the two extreme knots $\left(-\infty, \xi_{1}\right]$ and $\left[\xi_{K}, \infty\right)$
- The constraints frees up 4 degrees of freedom. The degrees of freedom of NCS is just the number of knots K.
- Assuming linearity near the boundary is reasonable since there is less information available

Extrapolating beyond the boundaries

Birth rate extrapolation

Example: Birthrate data, 1917-2003

Comparing Variation of Different Choices

Natural Cubic Splines

- Basis function construction for natural cubic splines
- Starting with a basis for cubic splines, and derive the reduced bases by imposing the boundary constraint, we obtain the basis functions

$$
N_{1}(x)=1, \quad N_{2}(x)=x, \quad N_{k+2}(x)=d_{k}(x)-d_{K-1}(x)
$$

where

$$
d_{k}(x)=\frac{\left(x-\xi_{k}\right)_{+}^{3}-\left(x-\xi_{K}\right)_{+}^{3}}{\xi_{K}-\xi_{k}}, \quad k=1, \ldots, K-2
$$

- We can check that each of the basis functions has zero second and third derivatives for $x \leq \xi_{1}$ and $x \geq \xi_{K}$

Natural Cubic Spline

Generating Natural Cubic Spline basis in R

```
> library(splines)
> ns(x, df = NULL, knots = NULL, intercept = FALSE)
```

- df: degrees of freedom (the total number of basis)
- knots : specify knots. By default, these will be the quantiles of x
- intercept: if TRUE, an intercept is included, default FALSE
- Return a matrix of dimension $n \times \mathrm{df}$

Smoothing Splines

Smoothing Splines

- B-splines and NCS are both methods that construct a $p \times M$ basis matrix \mathbf{F} (p is the number of variables; $p=1$ in our previous examples), and then model the outcome using a linear regression on \mathbf{F}.
- Inevitably, we need to select the order of the spline, the number of knots (AIC, BIC, CV) and even the location of knots (difficult)
- Is there a method that we can select the number and location of knots automatically?

Smoothing Splines

- Smoothing Spline: Let's start with an easy but "horrible" solution, by putting knots at all the observed data points $\left(x_{1}, \ldots x_{n}\right)$:

$$
\mathbf{y}_{n \times 1}=\mathbf{F}_{n \times n} \boldsymbol{\beta}_{n \times 1}
$$

Instead of selecting knots, let's use ridge-type shrinkage

$$
\operatorname{minimize}_{\boldsymbol{\beta}}\|\mathbf{y}-\mathbf{F} \boldsymbol{\beta}\|^{2}+\lambda \boldsymbol{\beta}^{\top} \Omega \boldsymbol{\beta}
$$

where Ω will be defined later and λ can be chosen by CV or GCV.

- In fact, the solution can be derived from a different aspect

Roughness Penalty Approach

- Let $W_{2}[a, b]$ be the space of all smooth functions defined on $[a, b]$
- Second order Sobolev space

$$
W_{2}[a, b]=\left\{g: g, g^{\prime} \text { are absolutely continuous and } \int_{a}^{b}\left[g^{\prime \prime}\right]^{2} d x<\infty\right\}
$$

- Global polynomial functions and cubic spline functions belong to $W_{2}[a, b]$.
- $W_{2}[a, b]$ is an infinite-dimension function space
- Find the "best" function in $W_{2}[a, b]$ to approximate f

Roughness Penalty Approach

- Penalized residual sum of squares

$$
\operatorname{RSS}(g, \lambda)=\frac{1}{n} \sum_{i=1}^{n}\left(y_{i}-g\left(x_{i}\right)\right)^{2}+\lambda \int_{a}^{b}\left[g^{\prime \prime}(x)\right]^{2} d x
$$

- First term measure the closeness of the model to the data
- Second term penalizes the roughness/curvature of the function
- Avoid the knot selection problem
- $\int_{a}^{b}\left[g^{\prime \prime}(x)\right]^{2} d x$ is called the roughness penalty

Roughness Penalty Approach

- λ is the smoothing parameter that controls the bias-variance trade-off
- $\lambda=0$: interpolate the data, overfitting
- $\lambda=\infty$: linear least-squares regression
- It turns out that the solution to the penalized residual sum of squares has to be a NCS

Theorem

$\widehat{g}=\arg \min R S S(g, \lambda)$ is a NCS with knots at the n data points x_{1}, \ldots, x_{n}

Proof

Intuition: Let g be a function on $[a, b]$ and \widetilde{g} be a NCS with

$$
g\left(x_{i}\right)=\widetilde{g}\left(x_{i}\right), \quad i=1, \ldots, n
$$

We can always find such \widetilde{g} since it consists of n basis. Then we can show

$$
\int g^{\prime \prime 2} d x \geq \int \widetilde{g}^{\prime \prime 2} d x
$$

meaning that we will always prefer the \widetilde{g}, the NCS "representation" of g, since the penalty is smaller, and the loss doesn't change.

Proof

Its only left to show that

$$
\int g^{\prime \prime 2} d x \geq \int \tilde{g}^{\prime \prime 2} d x
$$

We define $h(x)=g(x)-\widetilde{g}(x)$. So $h\left(x_{i}\right)=0$ for $i=1, \ldots, n$. Then

$$
\int g^{\prime \prime 2} d x=\int \tilde{g}^{\prime \prime 2} d x+\int h^{\prime \prime 2} d x+2 \int \tilde{g}^{\prime \prime} h^{\prime \prime} d x
$$

and (WLOG assuming x_{i} 's are ordered)

$$
\begin{aligned}
\int \widetilde{g}^{\prime \prime} h^{\prime \prime} d x & =\left.\widetilde{g}^{\prime \prime} h^{\prime}\right|_{a} ^{b}-\int_{a}^{b} h^{\prime} \widetilde{g}^{(3)} d x \\
& =-\sum_{i=1}^{n-1} \widetilde{g}^{(3)}\left(x_{j}^{+}\right) \int_{x_{j}}^{x_{j+1}} h^{\prime} d x \quad\left(\widetilde{g}^{(3)} \text { constant piecewise }\right) \\
& =-\sum_{i=1}^{n-1} \widetilde{g}^{(3)}\left(x_{j}^{+}\right)\left(h\left(x_{j+1}\right)-h\left(x_{j}\right)\right)
\end{aligned}
$$

Proof

- Hence the solution has to have a finite representation

$$
\widehat{g}(x)=\sum_{j=1}^{n} \beta_{j} N_{j}(x)
$$

where N_{j} 's are a set of natural cubic spline basis functions with knots at each of the unique x values

- We can then rewrite

$$
\sum_{i=1}^{n}\left(y_{i}-g\left(x_{i}\right)\right)^{2}=(\mathbf{y}-\mathbf{F} \boldsymbol{\beta})^{\top}(\mathbf{y}-\mathbf{F} \boldsymbol{\beta})
$$

where \mathbf{F} is an $n \times n$ matrix with $\mathbf{F}_{i j}=N_{j}\left(x_{i}\right)$

Proof

- The penalty function

$$
\begin{aligned}
\int_{a}^{b} g^{\prime \prime 2} d x & =\int\left(\sum_{i} \beta_{i} N_{i}^{\prime \prime}(x)\right)^{2} d x \\
& =\sum_{i, j} \beta_{i} \beta_{j} \int N_{i}^{\prime \prime}(x) N_{j}^{\prime \prime}(x) d x \\
& =\boldsymbol{\beta}^{\top} \Omega \boldsymbol{\beta}
\end{aligned}
$$

where Ω is an $n \times n$ matrix with $\Omega_{i j}=\int N_{i}^{\prime \prime}(x) N_{j}^{\prime \prime}(x) d x$.

Proof

- Hence our goal is to find β that minimizes

$$
\operatorname{RSS}(\boldsymbol{\beta}, \lambda)=\|\mathbf{y}-\mathbf{F} \boldsymbol{\beta}\|^{2}+\lambda \boldsymbol{\beta}^{\top} \Omega \boldsymbol{\beta}
$$

- This is a ridge penalized function and the solution is

$$
\begin{aligned}
\widehat{\boldsymbol{\beta}} & =\arg \min _{\boldsymbol{\beta}} \operatorname{RSS}(\boldsymbol{\beta}, \lambda) \\
& =\left(\mathbf{F}^{\top} \mathbf{F}+\lambda \Omega\right)^{-1} \mathbf{F}^{\boldsymbol{\top}} \mathbf{y}
\end{aligned}
$$

- The smoothing spline version of the "hat" matrix is called the smoother matrix

$$
\begin{aligned}
\widehat{f} & =\mathbf{F}\left(\mathbf{F}^{\top} \mathbf{F}+\lambda \Omega\right)^{-1} \mathbf{F}^{\top} \mathbf{y} \\
& =\mathbf{S}_{\lambda} \mathbf{y}
\end{aligned}
$$

Remark

- We have done the analysis of degrees of freedom for ridge type regression. The degrees of freedom of a smoothing spline is

$$
\mathrm{df}=\operatorname{Trace}\left(\mathbf{S}_{\lambda}\right)
$$

which ranges between 0 and n.

- Under some special constructions (Demmler and Reinsch, 1975), a basis with double orthogonality property, can lead to

$$
\mathbf{F}^{\top} \mathbf{F}=\mathbf{I}, \quad \text { and } \Omega \text { is diagonal }
$$

which gives exact solution of $\boldsymbol{\beta}$ (see our ridge lecture notes).

Remark

- Choosing the penalty λ is the same as ridge regression
- Leave-one-out CV:

$$
\mathrm{CV}=\frac{1}{n} \sum_{i=1}^{n}\left(\frac{y_{i}-\widehat{g}\left(x_{i}\right)}{1-\mathbf{S}_{\lambda}(i, i)}\right)^{2}
$$

- Generalized CV:

$$
\mathrm{GCV}=\frac{1}{n} \sum_{i=1}^{n}\left(\frac{y_{i}-\widehat{g}\left(x_{i}\right)}{1-\frac{1}{n} \operatorname{Trace}\left(\mathbf{S}_{\lambda}\right)}\right)^{2}
$$

Smoothing Splines in \mathbf{R}

$>$ library (splines)
smooth. spline ($x, y=N U L L, w=N U L L, d f, c v=F A L S E)$

- cv : FALSE uses GCV, TRUE uses Leave-one-out CV
- df: degrees of freedom between 1 and n, let GCV decide it automatically
- w: can be used if x has replicates

Generalized Additive Models

Generalized Additive Models

- Additive models assume that the conational expectation of Y is

$$
f(x)=\alpha+\sum_{j=1}^{p} f_{j}\left(x_{j}\right)
$$

- This can be extended to modeling Y 's with other distributions. Such as binary, counts, positive values, etc.
- Generalized Additive Models (GAM) assume that

$$
\mathrm{E}(Y \mid X)=g^{-1}\left(\alpha+\sum_{j=1}^{p} f_{j}\left(x_{j}\right)\right)
$$

- In logistic regression, we used logit link for g
- We fit each f_{j} using a cubic smoothing spline or kernel smoother

$$
g(\mathrm{E}(Y \mid X))=\alpha+\sum_{j=1}^{p} f_{j}\left(x_{j}\right)
$$

Generalized Additive Models

- Logistic regression

$$
\operatorname{logit}(\mathrm{P}(Y=1 \mid X))=\alpha+\sum_{j=1}^{p} f_{j}\left(x_{j}\right)
$$

- Poisson regression

$$
\log (E(Y \mid X))=\alpha+\sum_{j=1}^{p} f_{j}\left(x_{j}\right)
$$

-...

Fitting Additive Models

- $y=\alpha+\sum_{j=1}^{p} f_{j}\left(x_{j}\right)+\epsilon$
- Initialize
- Constant $\alpha=$ average response
- All $f_{j}=0$
- Cycle
- Fit one component at a time to residuals from the other components using a smoother
- Normalize most recent component to average to 0
- Stop when all components average within desired accuracy

Backfitting Algorithm

- Consider using general smoothers as building blocks to fit the model
- Initialize $\widehat{\alpha}=\bar{y}, \widehat{f_{j}}=0$
- Iterate (backfitting) until \widehat{f}_{j} 's stabilize:

$$
\begin{aligned}
& \widehat{f}_{j}=S_{j}\left(y-\widehat{\alpha}-\sum_{j^{\prime} \neq j} \widehat{f}_{j^{\prime}}\right) \\
& \widehat{f}_{j}=\widehat{f}_{j}-\frac{1}{n} \sum_{i=1}^{n} \widehat{f}_{j}\left(x_{i j}\right)
\end{aligned}
$$

where S_{j} denotes a smoothing spline fit.

Fitting Generalized Additive Models

- We cannot update the response values by subtract the current fitting values
- Use Iteratively Reweighted Least Squares (see previous lecture on logistic regression)
- Initialize $\widehat{\alpha}=\log [\bar{y} /(1-\bar{y})], \widehat{f}_{j}=0$
- Define $\widehat{\eta}_{i}=\widehat{\alpha}+\sum_{j} \widehat{f}_{j}\left(x_{i j}\right)$ and $\widehat{p}_{i}=1 /\left[1+\exp \left(-\widehat{\eta}_{i}\right)\right]$
- Calculate the working target variable $z_{i}=\widehat{\eta}_{i}+\frac{y_{i}-\widehat{p}_{i}}{\widehat{p}_{i}\left(1-\hat{p}_{i}\right)}$
- Construct weights $w_{i}=\widehat{p}_{i}\left(1-\widehat{p}_{i}\right)$
- Fit additive model to targets z_{i} with weight w_{i} using a weighted backfitting algorithm
- Stop when converged within specified accuracy

R implementation

- Package: mgcv, function gam
- The gam solves the smoothing parameter estimation problem by using the Generalized Cross Validation (GCV) criterion

```
> library (gam)
> form = formula("chd ~ ns(sbp,df=4) + ns(tobacco,df=4) +
                        ns(Id|,df=4) + famhist + ns(obesity,df=4)
    +
        ns(alcohol, df=4) + ns(age, df=4)")
>m = gam(form, data=SAheart, family=binomial)
> summary (m)
> par(mfrow = c(3, 3), mar = c(5, 5, 2, 0))
> plot(m, se = TRUE, residuals = TRUE, pch = 19, col = "darkorange")
```


Example: South African Heart Disease

