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Shrinkage Methods



Motivation

• Best subset selection
• Computationally expensive

• Not feasible when p is large

• Forward/backward selection
• No guarantee to find the best global submodel

• The selection process is discrete (“add” or “drop”), often leads to
high variance.

• Shrinkage methods
• A continuous process, does not suffer from hight variability
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Motivation

• The OLS estimator is a linear function of y, and it is the BLUE.

• But there can be (and often exist) biased estimators with smaller
variance

• Recall that the prediction accuracy is

Bias2 + Variance + Irreducible Error

and choosing estimators often involves the bias-variance
trade-off.

• Generally, by regularizing (shrinking, penalizing) the estimator in
some way, its variance can be reduced; if the corresponding
increase in bias is small, we have better prediction accuracy
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Shrinkage Methods

• Part I
• ℓ2 penalty: Ridge regression

• ℓ1 penalty: Lasso

• Connecting the two: Elastic net; Bridge penalty

• Part II
• Bias reduction: adaptive Lasso, SCAD, MCP

• Consistency of penalized methods

• Penalties for special data structures: grouped lasso, fused lasso
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Ridge Regression



A Motivating Example

1 > l i b r a r y (MASS)
2 > set . seed ( 1 )
3 > n = 30
4 >

5 > # h i g h l y c o r r e l a t e d v a r i a b l e s
6 > X = mvrnorm ( n , c (0 , 0) , mat r i x ( c (1 ,0 .999 , 0.999 , 1) , 2 ,2) )
7 > y = rnorm ( n , mean=1 + X [ , 1 ] + X [ , 2 ] )
8 >

9 > # compare parameter est imates
10 > summary ( lm ( y~X) ) $coef
11 Est imate Std . E r ro r t value Pr(>| t | )
12 ( I n t e r c e p t ) 1.038007 0.1647551 6.300302 9.627026e−07
13 X1 −11.272638 4.6402098 −2.429338 2.205727e−02
14 X2 13.265586 4.6315269 2.864193 7.993486e−03
15 > lm . r i dge ( y~X, lambda=5)
16 X1 X2
17 1.1214448 0.8770568 0.9836474
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Ridge Regression

Penalizing the square of the coefficients

β̂ ridge =argmin
β

1

n
∥y −Xβ∥2 + λ∥β∥2 (1)

=argmin
β

∥y −Xβ∥2 + nλ∥β∥2

• Hoerl and Kennard (1970); Tikhonov (1943)

• λ ≥ 0 is a tuning parameter (penalty level), it controls the amount
of shrinkage.

• The coefficients β̂ ridge are shrunken towards 0.
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Ridge Regression

An equivalent formulation is given by

minimize
β

n∑
i=1

(
yi −

p∑
j=1

βjxij

)2

subject to
p∑

j=1

β2
j ≤ s

• There is a one-to-one correspondence between the parameters
λ and s

• This is due to the KKT conditions
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Ridge Regression

Elements of Statistical Learning (2nd Ed.) c©Hastie, Tibshirani & Friedman 2009 Chap 3
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FIGURE 3.11. Estimation picture for the lasso (left)
and ridge regression (right). Shown are contours of the
error and constraint functions. The solid blue areas are
the constraint regions |β1|+ |β2| ≤ t and β2

1 + β2
2 ≤ t2,

respectively, while the red ellipses are the contours of
the least squares error function.

Ridge constrained solution
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Ridge Regression

• Ridge regression is mainly used to address multi-collinearity
problem in high-dimensional data

• When there are many correlated variables, a wildly large positive
coefficient on one variable can be canceled by a similarly large
negative coefficient on its correlated cousin.

• Ridge regression alleviate this problem by imposing a size
constraint
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Ridge Regression

• How to derive the solution β̂ ridge

• Degrees of freedom

• Tuning parameter selection

• Connections with other methods
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Solution for Ridge Regression

• For a fixed tuning parameter λ, we want to minimize

(y −Xβ)T(y −Xβ) + nλβTβ

• Take derivative with respect to β and set to zero, we have the
solution of the Ridge regression

β̂ ridge = (XTX+ nλI)−1XTy

• β̂ ridge is still a linear estimator
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Solution for Ridge Regression

• This is similar to the ordinary least squares solution, but with the
addition of a “ridge” down the diagonal

• XTX+ λI is always invertible, hence β̂ ridge is unique

• As λ → 0, β̂ ridge → β̂ ols

• As λ → ∞, β̂ ridge → 0
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Bias and Variance of Ridge Regression

• When β̂ ols exists, we can also write

β̂ ridge = (XTX+ nλI)−1XTy

= (XTX+ nλI)−1(XTX)(XTX)−1XTy

= (XTX+ nλI)−1(XTX)β̂ ols

= Zβ̂ ols

where Z = (XTX+ nλI)−1(XTX).

• How does this shrink β̂ ols?
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Bias and Variance of Ridge Regression

• The variance of β̂ ridge is

Var
(
β̂ ridge) =(XTX+ nλI)−1XTX(XTX+ nλI)−1

• The total variance
∑

j Var(β̂ ridge
j ) is a monotone decreasing

function of λ.
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Bias and Variance of Ridge Regression

• The the ridge estimator is biased

E(β̂ ridge) = Zβ

where Z = (XTX+ λI)−1(XTX).

• The total squared bias
∑

j Bias2
(
β̂

ridge
j

)
is a monotone

increasing function of λ.
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Understanding the Shrinkage

• Suppose we have orthogonal design matrix (XTX = nI), then
β̂ ols = 1

nX
Ty and

β̂ ridge =(XTX+ nλI)−1(XTX)β̂ ols

=(I+ λI)−1β̂ ols

=(1 + λ)−1β̂ ols,

meaning that we just need to shrink β̂ ols by (1 + λ)−1, i.e.,

β̂
ridge
j =

1

1 + λ
β̂ ols
j .
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Understanding the Shrinkage

• Var
(
β̂

ridge
j

)
= 1

(1+λ)2 Var
(
β̂ ols
j

)
(reduced from OLS!)

• Bias
(
β̂

ridge
j

)
= −λ

1+λβj (not unbiased!)

• There always exists a λ such that the MSE of β̂ ridge is smaller
than β̂ ols

17/44



Understanding the Shrinkage

• When the columns of X are not orthogonal, let’s take a singular
value decomposition (SVD) of X:

X = UDVT

where
• Un×n: columns uj ’s form an orthonormal basis for the column

space of X, UTU = I

• Vp×p: orthogonal matrix with VTV = I

• Dn×p: matrix with diagonal entries d1 ≥ d2 ≥ . . . ≥ dp ≥ 0 being
the singular values of X

• Sometimes we can write X = FVT where each columns of
Fn×p = UD is the so-called principal components and each
column of V is a principal direction.
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Understanding the Shrinkage
Elements of Statistical Learning (2nd Ed.) c©Hastie, Tibshirani & Friedman 2009 Chap 3
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FIGURE 3.9. Principal components of some input
data points. The largest principal component is the
direction that maximizes the variance of the projected
data, and the smallest principal component minimizes
that variance. Ridge regression projects y onto these
components, and then shrinks the coefficients of the
low-variance components more than the high-variance
components.
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Understanding the Shrinkage

• We can view PCA as (assuming X centered)

Σ̂ =
1

n
XTX =

1

n
VD2VT

where D2 = diag(d21, d22, . . . , d2p).

• The jth principal component is zj = Xvj = djuj with
Var(zj) = d2j .

• uj is the normalized jth principal component of X

• The Ridge estimate ŷ ridge is

Xβ̂ ridge = X(XTX+ nλI)−1XTy =

p∑
j=1

uj

(
d2j

d2j + nλ
uT
jy

)
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Understanding the Shrinkage

• Hence, Ridge regression can be understood as
(1) Perform principle component analysis of X

(2) Project y onto the principal components: uT
jy for each j

(3) Shrink the projections by the factor d2j/(d2j + nλ)

• Directions with smaller eigenvalues d2j get more shrinkage.

• The final ridge estimate of y is a sum of the p shrunk projections.
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Degrees of Freedom for Ridge Regression

• Although β̂ ridge is p-dimensional, it does not use the full potential
of the p covariates due to the shrinkage.

• For example, when λ → ∞, all the parameter estimates are
shrunk to 0. Intuitively, the d.f. is almost 0.

• If λ is 0, then it reduces to the OLS with d.f. = p

• The d.f. of a Ridge regression is between 0 and p
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Degrees of Freedom for Ridge Regression

• Recall our definition of degrees of freedom (d.f.) in the kNN
example:

df(f̂) =
1

σ2

n∑
i=1

Cov(ŷi, yi) =
1

σ2

n∑
i=1

Trace
(

Cov(Ŷ,Y)
)

• For Ridge regression, we have

ŷ = X(XTX+ λI)−1XTy

• Then the effective d.f. is

df(λ) = Trace
(
X(XTX+ λI)−1XT) = p∑

j=1

d2j
d2j + nλ
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Prostate Cancer Example
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Prostate Cancer Data: Ridge Regression
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Selecting the Tuning Parameter λ

• The R command lm.ridge (from MASS package) returns GCV,
which can be used to select λ.

• glmnet can also fit Ridge regression by setting α = 0

• The leave-one-out cross-validation (CV) error? In the context of
linear regression

1 Hold the ith sample (xi, yi) as a test sample, fit a regression model
based on the remaining (n− 1) observations, and denote the
coefficient as β̂[−i]

2 Calculate the prediction error on the holdout sample (yi − xT
i β̂[−i])

2

3 Repeat for every sample and

CV =

n∑
i=1

(
yi − xT

i β̂[−i]

)2
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Selecting the Tuning Parameter λ

• In LS, we do not need to run n regression models to calculate the
leave-one-out CV

CV =

n∑
i=1

(
yi − xT

i β̂[−i]

)2
=

n∑
i=1

(
yi − xT

i β̂

1−Hii

)2

where Hii is the (i, i)-th entry of the projection matrix H.

• Hence, we only need to run LS once and rescale the residuals.
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Selecting the Tuning Parameter λ

• For Ridge regression, it is very similar

CV(λ) =
n∑

i=1

(
yi − xT

i β̂
ridge
λ

1− Sλ(i, i)

)2

where Sλ(i, i) is the (i, i)-th entry of the projection matrix

Sλ = X(XTX+ λI)−1XT

• A modified version is called GCV (generalized CV)

GCV(λ) =
∑n

i=1

(
yi − xT

i β̂
ridge
λ

)2(
n− Trace(Sλ)

)2
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Bayesian Interpretation

• The Ridge regression solution can be viewed from a Bayesian
prospective, where we give a prior distribution β ∼ N (0, σ2/λ).

• Then the posterior distribution of β is normal, with posterior
mean (

XTX+ λI
)−1

XTy,

and posterior variance

σ2(XTX+ λI)−1XTX(XTX+ λI)−1
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Notes on the scale of predictors

The solution is not invariant with respect to the scale of the predictors!

we normalize the columns of the design matrix X such that they have
unit sample variance. We further center the data, that is, both y and
the columns of X have mean zero. Then, we can fit a linear
regression model without an intercept (we don’t penalize the
intercept). The parameters on the original scale can be reversely
solved.

Some packages (e.g. “ glmnet ”) in R handles the centering and
scaling automatically: it will do the transformation before running the
algorithm, and then will transform the obtained results back to the
original scale.
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Lasso: Least Absolute
Shrinkage and Selection
Operator



Motivation

• The Ridge regression shrinks the coefficients towards 0,
however, they are not exactly zero. Hence, we haven’t achieve
any “selection” of variables.

• Parsimony: we would like to select a small subset of predictions.
Forward/backword/subset does not provide global solution and
can be myopic at each step.

• Lasso provides a continuous process. We will discuss:
• The formulation, the solution when X is orthogonal

• Computation methods and solution path
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Lasso

Least absolute shrinkage and selection operator (Tibshirani 1996)

argmin
β

1

n
∥y −Xβ∥2 + λ∥β∥1

• Shrinkage of the ℓ1 norm of the parameters

• Selection of parameters, some will be exactly 0
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Lasso
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Lasso
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Lasso Under Orthogonal Design

Again, it will be helpful to view Lasso assuming orthogonal design,
i.e., XTX = nIp. Then

1

n
∥y −Xβ∥2 =

1

n
∥y −Xβ̂ ols +Xβ̂ ols −Xβ∥2

=
1

n
∥y −Xβ̂ ols∥2 + 1

n
∥Xβ̂ ols −Xβ∥2

where the cross product term

2(y −Xβ̂ ols)T(Xβ̂ ols −Xβ) = 2rT(Xβ̂ ols −Xβ) = 0,

since the second term is in the column space of X, while r is
orthogonal to that space.
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Lasso Under Orthogonal Design

• Since ∥y −Xβ̂ ols∥2 is not a function of β, we minimize

1

n
∥Xβ̂ ols −Xβ∥2 + λ∥β∥1

• Then, we have

β̂ lasso = argmin
β

1

n
∥Xβ̂ ols −Xβ∥2 + λ∥β∥1

= argmin
β

1

n
(β̂ ols − β)TXTX(β̂ ols − β) + λ∥β∥1

= argmin
β

(β̂ ols − β)T(β̂ ols − β) + λ∥β∥1

= argmin
β

p∑
j=1

(β̂ ols
j − βj)

2 + λ|βj |.

• This means we can solve the lasso estimators individually from
the OLS estimator. 35/44



Lasso Under Orthogonal Design

• Each of the βj ’s is essentially solving for

argmin
x

(x− a)2 + λ|x|, λ > 0

• The solution is simply

β̂ lasso
j =


β̂ ols
j − λ/2 if β̂ ols

j > λ/2

0 if |β̂ ols
j | ≤ λ/2

β̂ ols
j + λ/2 if β̂ ols

j < −λ/2

= sign
(
β̂ ols
j

)(
|β̂ ols

j | − λ/2
)
+

.
= SoftTH(β ols

j , λ)

• A large λ will shrink some of the coefficients to exactly zero,
which achieves “variable selection”.
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Equivalent Formulation

• The Lasso optimization problem is equivalent to

minimize
β

n∑
i=1

(
yi −

p∑
j=1

βjxij

)2

subject to
p∑

j=1

|βj | ≤ s

• Each value of λ corresponds to an unique value of s.

• Compare Ridge and Lasso?
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Linear Regression

Comparing Lasso and Ridge solutions
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Computation of Lasso Solution

• The Lasso problem is convex, although it may not be strictly
convex in β when p is large

• The solution is a global minimum, but may not be the unique
global one

• The Lasso solution is unique under conditions of the covariance
matrix
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Computation of Lasso Solution

• Shooting algorithm (Fu 1998): sequentially and iteratively update
each parameter estimate (coordinate descent algorithm).

• Least angle regression (Efron et al. 2004)
• The path of solutions is piecewise linear in λ

• Cost is approximately one least-squares calculation O(np2)

• Connection with stagewise regression

• Coordinate descent (Friedman et al 2010): The most popular
implementation, glmnet package; O(np)

• Also provides the solution path for the entire sequence of λ,
starting with the largest one

• Use the previous estimation of β as a warm start for smaller λ
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Lasso
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Lasso
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ℓq Penalties

• Ridge is ℓ2 penalty

• Lasso is ℓ1 penalty

• Best subset is ℓ0 penalty

• Bridge penalty is ℓq normal

Elements of Statistical Learning (2nd Ed.) c©Hastie, Tibshirani & Friedman 2009 Chap 3

q = 4 q = 2 q = 1 q = 0.5 q = 0.1

FIGURE 3.12. Contours of constant value of
P

j |βj |q for given values of q.

• Elastic-net is a hybrid of ℓ1 and ℓ2:

λ1∥β∥1 + λ2∥β∥22
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R Functions

• Use R help and R manuals

• Linear models: function lm

• QR decomposition qr ; Cholesky decomposition chol ; PCA
princomp , prcomp ; SVD svd .

• Ridge regression:
• package MASS ; function lm.ridge

• package glmnet ; function glmnet and cv.glmnet with alpha = 0

• Lasso:
• package lars ; function lars

• package glmnet ; function glmnet and cv.glmnet with alpha = 1
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