
STAT 542: Statistical Learning

Introduction to Numerical Optimization

Ruoqing Zhu, Ph.D. <rqzhu@illinois.edu>

Course Website: https://teazrq.github.io/stat542/

February 6, 2022

Department of Statistics
University of Illinois at Urbana-Champaign

1/41

mailto:rqzhu@illinois.edu
https://teazrq.github.io/stat542/

Numerical Optimization

• This lecture gives a very brief introduction to some numerical
optimization approaches, while most of them are for convex
optimizations

• The goal is to have sufficient knowledge to deal with specific
problems such as Lasso, SVM, etc.

• Reference:
Boyd, Stephen, and Lieven Vandenberghe. Convex Optimization.
Cambridge University Press, 2004.

• Many of the figures in this lecture are taken from online sources.
I may not include the reference for all of them. I want to thank all
of them!

2/41

Overview

Convex Optimization

• The problem: minimizing a convex function in a convex set

minimize
β

f(β)

subject to gi(β) ≤ 0, i = 1, . . . ,m

Aβ = b

• Examples:
• Linear regression: minimize 1

2
∥y −Xβ∥2, subject to none.

• Ridge regression: minimize 1
2
∥y −Xβ∥2, subject to

∑p
j=1 β

2
j < s

• First principal component: maximize βTXTXβ, subject to βTβ = 1

• To be consistent with the notation in the literature, we will use x

as the argument instead of using β in the objective function f .

3/41

Convex Optimization

• What is a convex set C ∈ Rp?

x1,x2 ∈ C =⇒ αx1 + (1− α)x2 ∈ C, ∀ 0 ≤ α ≤ 1.

• Visual:

convex set noncovex set

4/41

Convex Optimization

• What is a convex function f : Rp → R?

f
(
αx1 + (1− α)x2

)
≤ αf(x1) + (1− α)f(x2) ∀ 0 ≤ α ≤ 1.

• Visual:

• Famous result: Jensen’s inequality

5/41

Convex functions

• Examples of convex functions:
• exp(x), − log(x) , etc.

• Affine: aTx+ b is both convex and concave

• Quadratic: 1
2
xTAx+ bTx+ c, if A is positive semidefinite.

• All norms: ℓp

• A function is strictly convex if we can remove the equal sign:

f
(
αx1 + (1− α)x2

)
< αf(x1) + (1− α)f(x2) ∀ 0 < α < 1.

• f is convex ⇐⇒ −f is concave

6/41

Global and Local Minimizers

• In many examples, we want to find a global minimizer of an
objective function. This can usually be achieved for convex
optimization problems.

• A global minimizer x∗ satisfies f(x∗) ≤ f(x) for any x in the
feasible set.

• As contrast, a local minimizer may exist for non-convex problems,
and our algorithms may get “trapped” at a local minimum.

7/41

Properties of Convex functions

• First-order property: If f is differentiable with convex domain,
then f is convex iff

f(x) ≥ f(x∗) +▽f(x∗)T(x− x∗)

• A stationary point x∗ is a point where ▽f(x∗) = 0

• Combining the two (convex objective function and a stationary
point), we have

f(x) ≥ f(x∗)

• This means that x∗ is a global minimizer. It may not be unique,
but is as good as any other solution.

• Hence in convex optimization problems, we just need to find a
stationary point. Example: solving β in a linear regression

8/41

Properties of Convex functions

• A stationary point in a noncovex problem is not necessarily a
minimizer. It could be a maximizer or neither (e.g., a saddle
point)

• Hence, we often consider the second-order property. If f is twice
differentiable with convex domain, then f is convex iff ∀ x

▽2f(x) =

(
∂2f(x)

∂xi∂xj

)
= H(x) ⪰ 0

• Even when f is not convex, we may still use this property at a
local point x∗, instead of globally for all points, to show that x∗ is
a local minimizer.

9/41

Example

• Consider a function f(x) = x4 + 2x3 − 5x2

• To obtain stationary points,

▽f(x) = 4x3 + 6x2 − 10x = x(2x+ 5)(2x− 2)
.
= 0.

Then, there are three stationary points: -2.5, 0, and 1.

10/41

Example

• We can easily check the second order property:

▽2f(x) = 12x2 + 12x− 10

• f ′′(−2.5) = 35, f ′′(0) = −10, and f ′′(1) = 14.

• Hence, -2.5 and 1 are both local minimizers.

11/41

Solving Optimization problems

• In most situations, we do not have a simple objective function,
and it is impossible to give an analytic solution.

minimize
β

f(β)

• Hence, we often use a descent algorithm: start with a candidate
point x(0), then recursively finding x(1), x(2), . . ., such that

f(x(0)) > f(x(1)) > f(x(2)) > . . .

• Such methods usually involve finding a direction to move x such
that f(x) can decrease.

• We shall discuss two major types: gradient methods and
coordinate methods

12/41

Solving Optimization problems

• Gradient methods: use quadratic approximation to solve for point
such that ▽f(x) = 0.

• Newton’s method: use both ▽f(x) and H(x)

• quasi-Newton: use ▽f(x) and approximate H(x)

• Gradient descent: use ▽f(x) only

• Coordinate descent: improve the objective function one
dimension at a time.

• Example: solving the Lasso solution

13/41

Gradient Methods

Local Quadratic Approximation

• Suppose at a point x, we want to move to a better point x∗.

• Consider the Taylor expansion near x:

f(x∗)

≈ f(x) +▽f(x)T(x∗ − x) +
1

2
(x∗ − x)TH(x)(x∗ − x)

• Our goal is to find x∗ such that ▽f(x∗) = 0. By taking derivative
with respect to x∗, we have

0 = ▽f(x∗) = 0 +▽f(x) + (x∗ − x)TH(x).

Hence, we should move to the new point

x∗ = x−H(x)−1 ▽ f(x).

14/41

Newton-Raphson

• When we have explicit formula of the Hessian, we can simply
compute them the current point x(k) and follow the updating
scheme

x(k+1) = x(k) −H(x(k))−1 ▽ f(x(k))

or, sometimes for numerical stability,

x(k+1) = x(k) − δH(x(k))−1 ▽ f(x(k))

• When the objective function is a quadratic function (e.g., linear
regression, ridge regression), we only need to perform this once
to reach the optimizer.

• In general, when x(k+1) is not too far away from x(k), the
quadratic approximation is fairly accurate.

15/41

Numerical Approximation

• Sometimes computing H or even the gradient ▽f(x) is difficult.

• If the dimension of the problem is not very large, we may
approximate them numerically (element-wise).

• By definition, a finite-difference approximation of derivatives is

∂f

∂xj
≈ f(x+ δej)− f(x)

δ
,

• Second order derivatives can be done by

∂2f

∂xi∂xj
≈ f(x+ δiei + δjej)− f(x+ δiei)− f(x+ δjej) + f(x)

δiδj
.

• Here, ej is a vector with the jth element 1 and 0 everywhere else.

16/41

Quasi-Newton Methods

• However, such approximations (especially for H) can be
extremely slow!

• In addition, when the dimension of the problem is large, H is a
huge matrix.

• Numerically approximating H takes (p+ p2)/2 function calls

• Inverting H is at least O
(
p2 log(p)

)
time complex

• Quasi-Newton methods avoid such calculations using rank-one
updates of H(−1) based on the Sherman–Morrison–Woodbury
formula

17/41

Quasi-Newton Methods

• Intuition of quasi-Newton method
• Start with H(x)−1 = I at x(0)

• We shall update x(0) → x(1) → x(2) → · · ·

• Along this path, we need to compute ▽f(x(0)) → ▽f(x(1)) → · · ·

• If we treat the function f(x(k)) locally as a quadratic function,

▽f(x(k+1))−▽f(x(k)) ≈ H(x(k))(x(k+1) − x(k))

• This poses an additional information (rank-one condition) on H,
and can be used to update H(−1)

• BFGS is a famous example. Implemented by the optim()

function in R

18/41

Implementation

• If you have a smooth objective function, usually the log-likelihood
L(y,X,β), and we want to solve the parameters β.

• You can utilize the optim() function in R

1 > L <− f u n c t i o n (b , X, Y) . . .
2 > bhat = optim (rep (0 , P) , L , X = X, Y = Y, method = ”BFGS”)

• Sometimes, using a different initial value may be better.

19/41

BFGS

20/41

Saddle Point

• At a local minimizer, the Hessian matrix H will be positive
semi-definite

• At a local maximizer, the Hessian matrix H will be negative
semi-definite

• If a Hessian obtains both positive and negative eigen-values,
then we are at a saddle point, which is a more difficult issue.

21/41

Gradient descent

• In some other cases, for computational convince, we may just
use an identity matrix 1

δ I as H.

• This is the gradient descent and update is

x∗ = x− δ ▽ f(x)

• However, we have to choose δ, the step size:
• A step size too large may not even converge at all.

• How about we just fix δ to be a small value, say 10−5.

• A step size too small will take many iterations to converge.

• Sometimes we may use line search

22/41

Gradient descent

• Line search is a common approach for choosing the step size δ

• Once we have ▽f(x), search for δ by

δ = argmin
δ

f(x(k) − δ ▽ f(x(k)))

• This is a 1-dimensional problem once we know ▽f(x)

• It guarantees the descent property, hence, less risky than fixed
step size

• It requires additional calls of the function evaluation, hence could
be slow if functional calls are expensive. In that case, a constant
step size may be more beneficial.

23/41

Gradient descent

24/41

Coordinate Descent

Coordinate Descent

• Coordinate descent means updating one coordinate at a time.

• The Gauss-Seidel style coordinate descent algorithm at the kth
(grand) iteration:

β
(k+1)
1 = argmin

β1

f(β1, β
(k)
2 , . . . , β(k)

p)

β
(k+1)
2 = argmin

β2

f(β
(k+1)
1 , β2, . . . , β

(k)
p)

· · ·

β(k+1)
p = argmin

βp

f(β
(k+1)
1 , β

(k+1)
2 , . . . , βp)

• After we complete this loop, all βj are updated to their new
values, and we proceed to the next step.

25/41

Coordinate Descent

• The Jacobi style algorithm (can be parallelized) at the kth (grand)
iteration:

β
(k+1)
1 = argmin

β1

f(β1, β
(k)
2 , . . . , β(k)

p)

β
(k+1)
2 = argmin

β2

f(β
(k)
1 , β2, . . . , β

(k)
p)

· · ·

β(k+1)
p = argmin

βp

f(β
(k)
1 , β

(k)
2 , . . . , βp)

• After we complete this loop, update all βj to their new values,
and start over.

• Jacobi style algorithm can be computed in a parallel fashion,
while Gauss-Seidel style (more popular) can only be done
sequentially.

26/41

Coordinate Descent

• Why is coordinate descent preferred over gradient descent under
some cases?

• The objective function may not be differentiable (this is very
common)

• Analytic solution may exist for one-dimensional problems

• Example: Lasso is decomposable

f(x) = g(x) + h(x)

with differentiable g and non-differentiable (but convex) h.

1

2n
(y −Xβ)T(y −Xβ) + λ

p∑
i=1

|βi|

Note: we switch back to the “β” notation for parameters.

27/41

Coordinate Descent for Lasso

• For coordinate descent, fix all parameters expect the jth entry.

• Let β(−j) denote the vector by removing the jth entry, and X(−j)

be the corresponding design matrix by removing the jth column
from X.

• The coordinate descent problem at the kth iteration is to find

argmin
βj

1

2n
∥y −Xjβj −X(−j)β

(k)
(−j)∥

2
2 + λ

p∑
i=1

|βi|

=argmin
βj

1

2n
∥y −Xjβj −X(−j)β

(k)
(−j)∥

2
2 + λ|βj |

• This is a one-dimensional Lasso problem we have analyzed
before!

28/41

Coordinate Descent for Lasso

• First, we know the optimizer to the differentiable part

1

n
∥y −Xjβj −X(−j)β

(k)
(−j)∥

2
2

• Lets define the vector of temporary “outcome”

r = y −X(−j)β
(k)
(−j)

which is also the residual after removing the effect of all variables
except j.

• We need to optimize

1

n
∥r−Xjβj∥22 + λ|βj |

29/41

Coordinate Descent for Lasso

• We know the OLS solution to the squared error loss part is

βOLS
j =

XT
j r

XT
jXj

• And adding the penalty is simply performing a soft-thresholding
to the OLS solution (see the penalized regression lecture note
page 34 and 35)

• However, be careful that the scale XT
jXj will play a role here in

the shrinkage (if we do not assume XT
jXj = 1 or n)

• An easier solution is to pre-scale all covaraites: XT
jXj = n

30/41

Coordinate Descent for Lasso

• Further improving the efficiency in the coordinate descent
algorithm for Lasso

• Calculating the residual r = y −X(−j)β
(k)
(−j) can be very costly

since it involves multiplying using a n× (p− 1) matrix

• Instead, since we only update one βj at a time, the residual r at
the next iteration can be obtained with

rnew = r−X(j)β
(k+1)
(j)︸ ︷︷ ︸

residual of current model

+X(j+1)β
(k)
(j+1)︸ ︷︷ ︸

add j + 1 back

31/41

Complexity

• Which is faster? Coordinate descent or gradient descent? Let’s
compare them using a linear regression model:

• Gradient descent
• Xβ is (n× p)× (p× 1), i.e. O(np)

• The gradient −XT(y −Xβ) also cost O(np)

• Updating β = β + δXT(y −Xβ) costs very little

• Hence overall O(np) flops

• Coordinate descent
• Calculating r with our efficient algorithm coats 2n flops

• XT
j r cost n flops

• XT
jXj cost none if we pre-scale all XT

jXj = n

• Loop overall p variables will multiple the above by p. Hence the
overall cost is O(np) flops.

32/41

Complexity

• However, using coordinate descent for some particular problems
can be very beneficial (e.g. Lasso) since each parameter
updates to its minimizer fully, while gradient descent only move
toward the correct direction with a small step.

• When is coordinate descent useful/better?
• If updating each coordinate is cheap, and maybe the solution is

explicit (our lasso problem is an example).

• When the one-dimensional problem does not have simple analytic
solution, we may still update the one-dimensional problem in a
gradient descent fashion: βk+1

j = β
(k)
j − δ ∂f(β(k))

∂βk
j

• Will coordinate descent fail?

33/41

Coordinate descent may fail

Coordinate descent may fail

34/41

Stochastic Gradient Descent

Stochastic Gradient Descent

• SGD: stochastic approximation of gradient descent optimization

• When the objective function has a form of sum (e.g. sum of
squared errors)

L(β) =
1

n

n∑
i=1

l(xi, yi, β)

• In gradient descent we calculate the gradient of this function by
taking derivative w.r.t β

• However, this requires O(n) complexity, since we use all n
subjects. This can be slow for large datasets.

35/41

Stochastic gradient descent

• How about we just calculate the gradient w.r.t the loss of one
subject? In this case, we update β using

βnew = βold − δ∇l(xi, yi, β)

and iterate with i = 1, 2, . . . , n.

• This turns out to be very fast and eventually coverage to the
same target

• Note: tuning the step size is δ extremely crucial and trickly in this
case.

• A variant of this algorithm is the “mini-batch” SGD, which creates
small groups of subjects, and calculate the gradient based on
each group, and then loop over all groups

36/41

Stochastic gradient descent

by Midhilesh elavazhagan

37/41

https://medium.com/@midhileshelavazhagan/linear-regression-deep-view-part-1-fa1682ed8d78

Lagrangian Multiplier

Constrained Optimizations

• For the most part in this lecture, we have not discussed
constrained optimization.

• However, we have already see and will encounter more such
problems

• Lasso and Ridge can both be seen as setting the constrain in the
form of ∥β∥q ≤ s

• Support vector machine will be introduced later

• Toy example:

minimize f(x, y) = x2 + y2

subj. to g(x, y) = xy − 4 = 0

38/41

Constrained Optimizations

39/41

Constrained Optimizations

• As the level curve grows, it touches the constrain curve at certain
point.

• This implies that the tangent line of the level curve must coincide
with the tangent line of the constraint

• Hence their gradients will be a multiple of each other:

▽ f = λ▽ g

=⇒


2x = λy by taking derivative w.r.t. x

2y = λx by taking derivative w.r.t. y

xy − 4 = 0 the constraint itself

40/41

Constrained Optimizations

• The first two equations leads to x = y = 0 or λ = ±2, while
x = y = 0 is not feasible.

• λ = ±2 leads to x = y = 2 or x = y = −2, both are feasible.

• Noticing that the equation ▽f = λ▽ g is simply the derivative of
the Lagrangian function

L(x, y, λ) = f(x, y)− λg(x, y)

the constrained problem is essentially solving for stationary point
(with respect to x, y, and λ) of the Lagrangian.

41/41

	Overview
	Gradient Methods
	Coordinate Descent
	Stochastic Gradient Descent
	Lagrangian Multiplier

