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Reproducing Kernel Hilbert
Space



Space of Functions

• In many of our previous lectures, we considered estimating a
function f within a certain space

• Example: Linear space

{f : ∃w ∈ Rp, f(x) = wTx, ∀x ∈ Rp}

• Example: Basis expansion

{f : ∃w ∈ Rm, f(x) =

m∑
j=1

wjϕj(x),∀x ∈ Rp}

where (ϕ1(x), ϕ2(x), . . . , ϕm(x)) is a pre-defined collection of m
basis function, such as x2, log(x), etc.
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Space of Functions

• Oftentimes, these spaces of functions are either too simple or too
difficult to work with

• Is it possible to have a space H of functions that is flexible
enough, while the solution is also computationally simple

• We have seen such examples: smoothing spline — although we
are solving the best function in a very large space (second order
Sobolev), but the solution must be “represented” by the
smoothing spline basis.
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Reproducing Kernel Hilbert Space

• The Reproducing Kernel Hilbert Space (RKHS) is one such
spaces that is flexible enough and computationally easy to work
with

• One computational advantage of RKHS is that (see the kernel
SVM example), when we want to calculate the inner product of
two feature maps, it is the same as calculating the kernel:

k(x, z) = ⟨Φ(x),Φ(z)⟩

• Another computational advantage is that (smoothing spline
example) if we solve for a penalized loss objective function by
searching solutions in the RKHS, it solution has a finite sample
representation.
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Reproducing Kernel Hilbert Space

• Let’s construct this RKHS.

• First, given a kernel function, we will view a data point x ∈ X as a
real-valued function kx(·) = k(x, ·) ∈ RX .

• Then, we will make a Hilbert space by first defining all finite linear
combinations of kx(·):

G =

{ n∑
i=1

αik(xi, ·) | α ∈ R, n ∈ N, xi ∈ X
}
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Reproducing Kernel Hilbert Space

• For a Hilbert space, we need to equip it with an inner product
(⟨·, ·⟩) and make it complete (all Cauchy sequence converges).

• For the inner product, if given any two functions kx and kz in G,
we define

⟨kx, kz⟩ = k(x, z)

• If we have f =
∑

i αik(xi, ·) and h =
∑

i βik(zi, ·), then

⟨f, h⟩ =
∑
i,j

αiβjk(xi, zj)
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Reproducing Kernel Hilbert Space

• We then make G complete by including all limits of Cauchy
sequences

H = Ḡ

• H is our RKHS

• A (real) Hilbert space satisfies
• symmetric: ⟨x, z⟩ = ⟨z, x⟩

• linear: ⟨ax1 + bx2, z⟩ = a⟨x1, z⟩+ b⟨x2, z⟩

• positive definite: ⟨x, x⟩ ≥ 0 and ⟨x, x⟩ = 0 iff x = 0
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Reproducing Kernel Hilbert Space
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The Reproducing Property

• Let’s consider a function in H, f =
∑

i αik(xi, ·).

• We want to evaluate this function at x, i.e., f(x).

• Instead, calculating its inner product with another function k(x, ·)
would “reproduce” this evaluation:

⟨f, k(x, ·)⟩ = ⟨
∑
i

αik(xi, ·), k(x, ·)⟩

=
∑
i

αi⟨k(xi, ·), k(x, ·)⟩

=
∑
i

αik(xi, x)

= f(x)
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Kernel Functions

• By the Riesz representation theorem, any RKHS must be
associated with a unique reproducing kernel K.

• As converse, by the Moore-Aronszajn theorem, any (symmetric
and positive definite) kernel uniquely defines a RKHS

• The construction of kernels is very flexible, for example, we could
take sums, transformations and products of existing kernel
functions and make them a new kernel.
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Examples

• The space H of all linear functions f(x) = wTx is a RKHS

• In fact, we can also find the associated kernel using the
reproducing property. First, take f = Kz and by the reproducing
property, we have

⟨Kz,Kx⟩H = Kz(x) = K(z, x)

Then, since f is a linear function, we must have

K(z, x) = zTx

• Hence, the linear kernel is the unique kernel associated with the
space of linear functions.
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Representor Theorem

• Hence, it is now safe to say that the RKHS and the kernel are
two equivalent concepts.

• However, RKHS is still an infinite-dimensional vector space. How
can we find the solution in this space? (think about the
smoothing spline example).

• The Representor Theorem shows that the solution has to live in
a finite-dimensional subspace

• Computationally tractable
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The Representor Theorem



Representor Theorem

• Representer Theorem (Kimeldorf and Wahba, 1970)
• Consider a positive-definite real-valued kernel K : X × X → R,

associated with a RKHS H.

• If we are given a set of data {xi, yi}ni=1, then if we search for the
best solutions in H of the optimization problem

f̂ = argmin
f∈H

L({yi, f(xi)}ni=1) + p(∥f∥2H)

• The solution must have the form

f̂ =

n∑
i=1

wiK(·, xi)

• Here L is a loss function, p is a monotone penalty.

• The proof is similar to the smoothing spline example.
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Connections

• In fact, these three things always go together:
• K(·, ·): a symmetric and positive definite kernel

• H: a RKHS

• Φ(x): a set of basis (by Mercer’s theorem)

• Note: for the equivalence between K and Φ, we also showed
examples of K(x, z) = (xTz)2 and e−γ∥x−z∥ in the SVM lecture

• With these guarantees, we can first pick a kernel K, then the
RKHS H is uniquely defined. However, to find the best function
H to optimize our objective function, we only need to worry about
its finite representation

f(·) =
n∑

i=1

wiK(·, xi).
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Proof

• The proof of Representor Theorem consists of several steps

• Consider a penalized loss objective function

f̂ = argmin
f∈H

L
(
{yi, f(xi)}ni=1

)
+ p(∥f∥2)

• Use the kernel K associated with H to define a set of functions

K(·, xi), K(·, x2), · · · , K(·, xn)

• For any f ∈ H, find its project on span{K(·, xi), · · · , K(·, xn)},
and let the orthogonal complement as h(·).
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Proof

• Hence we have

f(·) =
n∑

i=1

αiK(·, xi) + h(·),

where ⟨h(·),K(·, xi)⟩ = 0 for all i.

• For the loss function part, we only evaluate f(·) on the training
data, which is (by the reproducing property)

f(xj) =

〈
n∑

i=1

αiK(·, xi) + h(·),K(·, xj)

〉

=

n∑
i=1

αi ⟨K(·, xi),K(·, xj)⟩ ,

which has nothing to do with h(·).
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Proof

• For the penalty part,

∥f∥2 =∥
n∑

i=1

αiK(·, xi) + h(·)∥2

= ∥
n∑

i=1

αiK(·, xi)∥2 + ∥h(·)∥2

≥ ∥
n∑

i=1

αiK(·, xi)∥2

• As long as the penalty function p(·) is monotone increasing, the
penalty on ∥f∥2 is larger than the penalty of its projection on the
space spanned by n samples.

• This makes its projection a better solution, which must be
represented by the observed sample.
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Kernel Ridge Regression



Kernel Ridge Regression

• Lets go back to the classical ridge regression:

1

n
∥y −Xβ∥2 + λ∥β∥2

• Recall that the exact solution can be obtained through the
normal equation after taking the derivative

2XT(y −Xβ) = 2nλβ

• And

β = (XTX+ nλI)−1XTy
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Kernel Ridge Regression

• Let’s introduce an alternative view, and use the same technique
in the SVM example to solve it

minimize
β

1

n
∥y −Xβ∥2 + λ∥β∥2

• Introduce a new variable zi = yi − xT
iβ, for i = 1, . . . , n. Then the

original problem becomes (with a change of constant):

minimize
z,β

1

2nλ
∥z∥2 + 1

2
∥β∥2

subject to zi = yi − xT
iβ, for i = 1, . . . , n

• The form looks similar to the SVM primal problem
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Kernel Ridge Regression

• Recall the SVM constrained optimization, we introduced
Lagrangian multipliers αi’s (here αi ∈ R):

L =
1

2nλ
zTz+

1

2
βTβ +

∑
i

αi(yi − xT
iβ − zi)

• Again, we have the primal:

min
z,β

max
α

L

• But we know the dual is probably easier:

max
α

min
z,β

L
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Kernel Ridge Regression

• First, we solve for the best z and β for any given α (in the dual):

∂L
∂zi

=
1

nλ
zi − αi = 0 for i = 1, . . . , n

and
∂L
∂β

= β −
∑
i

αixi = 0,

• This gives
zi = nλαi

β =
∑
i

αixi

• The best β is a linear function of xi’s. The solution must lie in the
span of training data.
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Kernel Ridge Regression

• How to predict a future point x? Since we have a linear model,
the prediction for a new subject with covariate x is

f(x) = xTβ =
1

λ

∑
i

αix
Txi

• If we view xTxi as a linear kernel:

K(x, xi) = xTxi

• Then the prediction function is just

f(x) =
1

λ

∑
i

αiK(x, xi)

• The reproducing property!
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Kernel Ridge Regression

• To finish the dual form, plugin the optimizers of zi and β:

max
α

min
z,β

L = max
α

nλ

2
αTα+

1

2

∑
i,j

αix
T
i xjαj

+
∑
i

αi

(
yi − xT

i

∑
j

αjxj − nλαi

)
= max

α
− nλ

2
αTα− 1

2

∑
i,j

αix
T
i xjαj +αTy

• We can apply the kernel trick

max
α

− nλ

2
αTα− 1

2

∑
i,j

αiK(xi, xj)αj +αTy

= max
α

− nλ

2
αTα− 1

2
αTKα+αTy
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Kernel Ridge Regression

• To obtain the solution, we take a derivative w.r.t. α:

−nλIα−Kα+ y = 0

• The solution is given by

α = (nλI+K)−1y

• For linear kernel, XTα = β

• But for non-linear kernel functions this is easy to work with

25/28



Kernel Ridge Regression

• Back to the original Loss + Penalty form, a Kernel ridge
regression is given by

argmin
α

1

n

∑
i

(yi − f(xi))
2
+ λ∥f∥2H

= argmin
α

1

n

∑
i

(
yi −

n∑
j=1

αjK(xi, xj)
)2

+ λ∥f∥2H

= argmin
α

1

n
∥y −Kα∥2 + λαTKα
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Kernel Ridge Regression

• By taking the derivative with respect to α, we have (normal
equation):

− 1

n
K(y −Kα) + λKα = 0

• One solution is
α̂ = (K+ nλI)−1y

• Then, for any new target point x0, the prediction is

f̂(x0) =

n∑
i=1

α̂iK(x0, xi)

• The tuning parameter α could be selected by cross-validation.
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Kernel Ridge Regression

• Advantage: we can fit nonlinear functions f(x).

• Computational cost:
• Solving for α involves inverting an n× n matrix.

• All training samples xi need to be saved for prediction.

• Inversion of a n× n matrix is O(n3) computational complexity.
This could be a disadvantage when n is extremal large.
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