STAT 542: Statistical Learning

K-Nearest Neighbor and the Bias-Variance Trade-Off

Ruoqing Zhu, Ph.D. <rqzhu@illinois.edu>

Course Website: https://teazrq.github.io/stat542/

January 24, 2022

Department of Statistics University of Illinois at Urbana-Champaign

K-Nearest Neighbour

• Let's consider a regression model,

$$Y = f(X) + \epsilon,$$

where $E(\epsilon) = 0$ and $Var(\epsilon) = \sigma^2$.

- Collect a set of i.i.d. training data $\mathcal{D}_n = \{x_i, y_i\}_{i=1}^n$
- From \mathcal{D}_n , estimate the regression function as \hat{f} ("*f*-hat").
- Predict the value of testing data Y at a target point x_0 .

- *k*-Nearest Neighbour (*k*NN) is a nonparametric method that predicts a target point *x*₀ with the average of nearby observations in the training data
- For regression, the prediction at a given target point x₀ is

$$\widehat{y} = \frac{1}{k} \sum_{x_i \in N_k(x_0)} y_i,$$

where $N_k(x)$ defines a set of k samples from the training data (in terms of their feature values) that are closest to x_0 .

Can also be used for classification

Example

Data with only 1 feature from uniform $[0, 2\pi]$. The true model (blue) is

 $Y = 2\sin(X) + \epsilon,$

where ϵ is standard normal error. We fit the data with 1NN.

Simulate 200 observations, and see how the model changes over k.

Simulate 200 observations, and see how the model changes over k.

The model becomes "smoother" as k increases. However, this eventually deviates from the truth if k is too large.

The Bias-variance Trade-off

- We can see when k is small, the estimated model is unstable.
- Also, each time we observe a new training data, we may get a very different estimation. (due to the closest sample and *ϵ*)
- The statistical quantity to describe this property is the variance of the estimator \hat{f} .
- For a target point x_0 , variance of $\widehat{f}(x_0)$ is

$$\operatorname{Var}(\widehat{f}(x_0)) = \mathsf{E}\left[\left(\widehat{f}(x_0) - \mathsf{E}\widehat{f}(x_0)\right)^2\right]$$

- When *k* is large, the estimated model eventually deviates (systematically) from the truth.
- The statistical quantity to describe this property is the bias of the estimator \hat{f} .
- For a target point x_0 , bias of $\widehat{f}(x_0)$ is

$$\mathsf{Bias}\big(\widehat{f}(x_0)\big) = f(x_0) - \mathsf{E}\widehat{f}(x_0)$$

An accurate prediction

· Using squared-error loss, the prediction error is

$$\begin{aligned} & \mathsf{Err}(x_{0}) \\ &= \mathsf{E}_{\mathcal{D}_{n},Y_{0}} \Big[\big(Y_{0} - \hat{f}(x_{0}) \big)^{2} \Big] \\ &= \mathsf{E}_{\mathcal{D}_{n},Y_{0}} \Big[\big(Y_{0} - f(x_{0}) + f(x_{0}) - \mathsf{E}_{\mathcal{D}_{n}} \hat{f}(x_{0}) + \mathsf{E}_{\mathcal{D}_{n}} \hat{f}(x_{0}) - \hat{f}(x_{0}) \big)^{2} \Big] \\ &= \dots \\ &= \underbrace{\mathsf{E}_{Y_{0}} \Big[\big(Y_{0} - f(x_{0}) \big)^{2} \Big]}_{\mathsf{Irreducible Error}} + \underbrace{\big(f(x_{0}) - \mathsf{E}_{\mathcal{D}_{n}} \hat{f}(x_{0}) \big)^{2}}_{\mathsf{Bias}^{2}} + \underbrace{\mathsf{E}_{\mathcal{D}_{n}} \Big[\big(\hat{f}(x_{0}) - \mathsf{E}_{\mathcal{D}_{n}} \hat{f}(x_{0}) \big)^{2} \Big]}_{\mathsf{Variance}} \end{aligned}$$

· All the cross terms are zero

- · The prediction error is a sum of three terms
- $E[(Y f(x))^2] = \sigma^2$ is the irreducible error term that cannot be avoided, because we cannot predict ϵ
- Of course, we want to minimize both Bias² and the Variance, however, this is not always possible...

- The first instinct is that one should minimize the bias 2 term $\mathsf{E}[(f(x_0)-\mathsf{E}\widehat{f}(x))^2]$
- Why producing a model that is asymptotically incorrect, i.e., $f(x_0) \neq \mathsf{E}\widehat{f}(x)$?
- This instinct is wrong! This is usually at the expense of high variance, which eventually damages the prediction performance...
- We already see this with 1NN

An accurate prediction

- 1NN has small Bias², as the closet neighbor converges to the target point x_0 as $n \to \infty$
- However, the variance is large because the estimator only uses
 one observation

$$\mathsf{E}\big[(\widehat{f}(x_0) - \mathsf{E}\widehat{f}(x_0))^2\big] = \mathsf{E}\epsilon^2 = \sigma^2.$$

• If we use more "neighbouring" points, say k, the variance would reduce to approximately σ^2/k . But the bias² will increase as neighbours are far away from x_0 .

- · A related concept is the model complexity
- In linear regression, this is simply the degrees of freedom
- For kNN, k determines the model complexity
- e.g., when k = N, this is just the sample mean, and the model is very simple

Model Complexity, over- and under-fitting

- Model complexity \uparrow (small k) \longrightarrow Bias² \downarrow and Variance \uparrow
- Model complexity \downarrow (large k) \longrightarrow Bias² \uparrow and Variance \downarrow

- As we can see, model complexity, bias-variance trade-off and over- and under-fitting are usually related concepts
- Over-fitting happens when a model performs well on the training data, but not on the testing data
- How to choose k to prevent over-fitting?

k-fold Cross-validation

- · Randomly split the data into 10 portions
- · Fit the model using 9 portions as training data
- · Calculate the testing error using the remaining portion
- · Alternate the testing set and average all testing errors

- · Cross-validation has many variations
- A *k*-fold cross-validation is random and the result can be affected by the randomness
- We could repeatedly run k-fold cross-validation several times
- Leave-one-out cross-validation is deterministic, but takes longer to run
- · Repeated random sub-sampling is another choice

Model Complexity

Degrees-of-freedom and Model Complexity

- Degrees-of-freedom and model complexity are related concepts, and they can be used to prevent over-fitting
- For *k*NN, the tuning parameter *k* directly controls both
- For some other models, a penalized framework is used to control complexity

```
\underset{f}{\arg\min} \ \log(f) + \lambda \operatorname{complexity}(f)
```

· More examples: Lasso, Ridge, tree models, etc.

- Sometime the model complexity can be measured using the degrees-of-freedom, e.g., ℓ_0 penalty
- In linear regression, the degrees-of-freedom is the number of variables used in the model
- · A more general definition is

$$\mathsf{df}(\widehat{f}\,) = \frac{1}{\sigma^2}\sum_{i=1}^n \mathsf{Cov}(\widehat{Y}_i,Y_i)$$

- Treat $X_i = x_i$'s as fixed values, not random
- + $1/\sigma^2$ takes care of the variance of the random error term

• If we let $\widehat{\mathbf{Y}} = (\widehat{Y}_1, \dots, \widehat{Y}_n)$ and $\mathbf{Y} = (Y_1, \dots, Y_n)$, we can rewrite the definition as

$$\mathrm{df}(\widehat{f}) = \frac{1}{\sigma^2}\mathrm{Trace}\Big(\mathrm{Cov}(\widehat{\mathbf{Y}},\mathbf{Y})\Big)$$

· This can be convenient for linear regression

We can easily verify several cases:

- For 1NN, df = n
- If $\widehat{y}_i = \overline{y}$, i.e., *n*NN, then df = 1
- For linear regression, df = p
- For kNN, df = n/k

The formula works for kernel methods too.

*k*NN for Classification

kNN for Classification

For hard classification, the most prevalent class in $N_k(x_0)$ is used

$$\widehat{y} = \underset{c \in C}{\operatorname{arg\,max}} \sum_{x_i \in N_k(x_0)} \mathbf{1}\{y_i = c\},$$

An example from the HTF textbook. (BLUE = 0, ORANGE = 1)

Similar to the regression case, the k-NN classification model does majority vote (the most prevalent class) within the neighborhood of a target point x. 1NN plot is a Voronoi tessellation

We fit *k*-NN classification model to the example. Of course, we would not expect 1NN to perform well...

As we further increase k, the model tends to be less complex. Compare 66NN with a linear model that uses only 3 parameters.

- 1NN error is no more than twice of the Bayes error, as $n \to \infty$
- As $n \to \infty$, we have $d(x_0, x_{1nn}) \to 0$, where x_{1nn} is the closest neighbor of x_0 . and we may assume that $\mathsf{P}(Y|x_{1nn}) \to \mathsf{P}(Y|x_0)$
- The error of 1NN is

$$\begin{split} \mathsf{P}(Y = 1|x_0)[1 - \mathsf{P}(Y = 1|x_{1nn})] + [1 - \mathsf{P}(Y = 1|x_0)]\mathsf{P}(Y = 1|x_{1nn}) \\ \leq [1 - \mathsf{P}(Y = 1|x_{1nn})] + [1 - \mathsf{P}(Y = 1|x_0)] \\ \approx 2[1 - \mathsf{P}(Y = 1|x_0)] \\ = 2 \times \mathsf{Bayes \ Error} \end{split}$$

• This is a very crude bound, but it shows that if the noise is small, 1NN may be reasonable.

Remarks

- kNN vs. linear model
- · Distance measure
- · Computational issue
- · Curse of dimensionality
- · Double descent

- The goal is to approximate $f(x) = \mathsf{E}(Y|X = x)$
- Linear regression makes a structural assumption: *f* is linear.
 - low variance: Number of parameters is p (fixed); we know that when sample size n grows, the variance of $\hat{\beta}$ is $\propto 1/n$.
 - high bias (underfit): linear assumption is very restrictive
- *k*NN makes on assumption on *f*, except some smoothness.
 - low bias (overfit): flexible and adaptive. It can be shown that as if $k \to \infty$ and $n/k \to 0$, *k*NN is consistent.
 - high variance: number of parameters for kNN is roughly n/k;

k-Nearest Neighbour in Classification

An "U" shaped prediction error curve is again observed for the testing sample (Figure from HTF):

k - Number of Nearest Neighbors

Degrees of Freedom – N/k

- Closeness between two points needs to be defined based on some distance measures
- By default, we use Euclidean distance (ℓ_2 norm) for continuous variables

$$d^{2}(\boldsymbol{u}, \boldsymbol{v}) = \|\boldsymbol{u} - \boldsymbol{v}\|_{2}^{2} = \sum_{i=1}^{p} (u_{i} - v_{i})^{2}$$

Hence the neighbourhood is not invariant to the scaling of the variables.

• We often scale the variables marginally when using *k*NN, so that the distance is

$$d^2(\boldsymbol{u}, \boldsymbol{v}) = \sum_{j=1}^p \frac{(u_i - v_i)^2}{\sigma_j^2}$$

where σ_i^2 is the variance of variable *j*.

Mahalanobis distance is also scale-invariant and takes care of correlation

$$d^2(\boldsymbol{u},\boldsymbol{v}) = (\boldsymbol{u}-\boldsymbol{v})^{\mathsf{T}} \Sigma^{-1}(\boldsymbol{u}-\boldsymbol{v}),$$

where $\boldsymbol{\Sigma}$ is a covariance matrix.

· Hamming distance is usually used for categorical variables

Example: Handwritten Digit Recognition Data

- Digits 0-9 scanned from envelopes by the U.S. Postal Service
- 7291 training samples, 2007 testing samples
- Apply kNN and calculate the errors
- 1NN with Euclidean distance gives 5.6% error rate
- 1NN with tangent distance (Simard et al., 1993) gives 2.6% error

- Need to store the entire training data for future prediction
- Prediction can be slow. Needs to calculate the distance from x_0 to all training sample and sort them.
- · Some fast nearest neighbor search algorithms such as kd-tree
- A distance measure may affect accuracy

Curse of dimensionality

- High-dimension low sample size $(p \gg n)$
 - The resolution of the handwritten digit example is $16\times 16=256$
 - Some common imaging data in medical are 1024×1024 while only a few hundred samples are available
 - Strategy games (Go, StarCraft, etc.) may have a huge number of variables
- Curse of Dimensionality
 - For fixed n, as p increases, the data become sparse
 - As *p* increases, the number of possible models explodes (computation burden, variable selection necessary)

Curse of Dimensionality

- The curse of dimensionality is well illustrated by a subcubical neighborhood for uniform data in a unit cube.
- Suppose the sample points are evenly spread out on $[0, 1]^p$, and we want to fit k = 10 nearest neighbors with n = 1000. Let l be the edge length of the hyper-cube that contains all k-nearest neighbor of a test point. How big is l?

•
$$l^p \approx \frac{k}{n}$$

- When p = 2, l = 0.1
- When p = 10, l = 0.63
- When p = 100, l = 0.955

Curse of Dimensionality

- Suppose we have sample points evenly spread out on [0,1]
- In ten dimensions we need to cover 80% of the range of each coordinate to capture 10% of the data.

Fraction of Volume

- However, in the previous handwritten digit problem, KNN seems to work pretty well. Why?
- There is potential lower dimensional subspace (manifold).
- Total volume of the data is much reduced there are more samples within the neighborhood of an existing sample

Double Descent

- Recent research shows that the bias-variance trade-off may not be everything
- E.g., deep learning models are always over-parameterized. However, they still have good performance.

Belkin, et al. "Reconciling modern machine-learning practice and the classical bias-variance trade-off." PNAS (2019)