STAT 542: Statistical Learning
 K-Nearest Neighbor and the Bias-Variance Trade-Off

Ruoqing Zhu, Ph.D. rqzhu@illinois.edu
Course Website: https://teazrq.github.io/stat542/
January 24, 2022
Department of Statistics
University of Illinois at Urbana-Champaign

K-Nearest Neighbour

Regression Models

- Let's consider a regression model,

$$
Y=f(X)+\epsilon,
$$

where $\mathrm{E}(\epsilon)=0$ and $\operatorname{Var}(\epsilon)=\sigma^{2}$.

- Collect a set of i.i.d. training data $\mathcal{D}_{n}=\left\{x_{i}, y_{i}\right\}_{i=1}^{n}$
- From \mathcal{D}_{n}, estimate the regression function as \widehat{f} (" f-hat").
- Predict the value of testing data Y at a target point x_{0}.

k-Nearest Neighbour

- k-Nearest Neighbour ($k \mathrm{NN}$) is a nonparametric method that predicts a target point x_{0} with the average of nearby observations in the training data
- For regression, the prediction at a given target point x_{0} is

$$
\widehat{y}=\frac{1}{k} \sum_{x_{i} \in N_{k}\left(x_{0}\right)} y_{i},
$$

where $N_{k}(x)$ defines a set of k samples from the training data (in terms of their feature values) that are closest to x_{0}.

- Can also be used for classification

Example

Data with only 1 feature from uniform $[0,2 \pi]$. The true model (blue) is

$$
Y=2 \sin (X)+\epsilon
$$

where ϵ is standard normal error. We fit the data with 1 NN .

k-Nearest Neighbour in Regression

Simulate 200 observations, and see how the model changes over k.

1-Nearest Neighbor Regression

k-Nearest Neighbour in Regression

Simulate 200 observations, and see how the model changes over k.

k-Nearest Neighbour in Regression

The model becomes "smoother" as k increases. However, this eventually deviates from the truth if k is too large.

33-Nearest Neighbor Regression

100-Nearest Neighbor Regression

The Bias-variance Trade-off

Variance

- We can see when k is small, the estimated model is unstable.
- Also, each time we observe a new training data, we may get a very different estimation. (due to the closest sample and ϵ)
- The statistical quantity to describe this property is the variance of the estimator \widehat{f}.
- For a target point x_{0}, variance of $\widehat{f}\left(x_{0}\right)$ is

$$
\operatorname{Var}\left(\widehat{f}\left(x_{0}\right)\right)=\mathrm{E}\left[\left(\widehat{f}\left(x_{0}\right)-\mathrm{E} \widehat{f}\left(x_{0}\right)\right)^{2}\right]
$$

Bias

- When k is large, the estimated model eventually deviates (systematically) from the truth.
- The statistical quantity to describe this property is the bias of the estimator \widehat{f}.
- For a target point x_{0}, bias of $\widehat{f}\left(x_{0}\right)$ is

$$
\operatorname{Bias}\left(\widehat{f}\left(x_{0}\right)\right)=f\left(x_{0}\right)-\mathrm{E} \widehat{f}\left(x_{0}\right)
$$

An accurate prediction

- Using squared-error loss, the prediction error is

$$
\begin{aligned}
& \operatorname{Err}\left(x_{0}\right) \\
= & \mathrm{E}_{\mathcal{D}_{n}, Y_{0}}\left[\left(Y_{0}-\widehat{f}\left(x_{0}\right)\right)^{2}\right] \\
= & \mathrm{E}_{\mathcal{D}_{n}, Y_{0}}\left[\left(Y_{0}-f\left(x_{0}\right)+f\left(x_{0}\right)-\mathrm{E}_{\mathcal{D}_{n}} \widehat{f}\left(x_{0}\right)+\mathrm{E}_{\mathcal{D}_{n}} \widehat{f}\left(x_{0}\right)-\widehat{f}\left(x_{0}\right)\right)^{2}\right] \\
= & \ldots \\
= & \underbrace{\mathrm{E}_{Y_{0}}\left[\left(Y_{0}-f\left(x_{0}\right)\right)^{2}\right]}_{\text {Irreducible Error }}+\underbrace{\left(f\left(x_{0}\right)-\mathrm{E}_{\mathcal{D}_{n}} \widehat{f}\left(x_{0}\right)\right)^{2}}_{\text {Bias }^{2}}+\underbrace{\mathrm{E}_{\mathcal{D}_{n}}\left[\left(\widehat{f}\left(x_{0}\right)-\mathrm{E}_{\mathcal{D}_{n}} \widehat{f}\left(x_{0}\right)\right)^{2}\right]}_{\text {Variance }}
\end{aligned}
$$

- All the cross terms are zero

An accurate prediction

- The prediction error is a sum of three terms
- $\mathrm{E}\left[(Y-f(x))^{2}\right]=\sigma^{2}$ is the irreducible error term that cannot be avoided, because we cannot predict ϵ
- Of course, we want to minimize both Bias ${ }^{2}$ and the Variance, however, this is not always possible...

An accurate prediction

- The first instinct is that one should minimize the bias ${ }^{2}$ term $\mathrm{E}\left[\left(f\left(x_{0}\right)-\mathrm{E} \widehat{f}(x)\right)^{2}\right]$
- Why producing a model that is asymptotically incorrect, i.e., $f\left(x_{0}\right) \neq \mathrm{E} \widehat{f}(x) ?$
- This instinct is wrong! - This is usually at the expense of high variance, which eventually damages the prediction performance...
- We already see this with 1 NN

An accurate prediction

- 1NN has small Bias 2, as the closet neighbor converges to the target point x_{0} as $n \rightarrow \infty$
- However, the variance is large because the estimator only uses one observation

$$
\mathrm{E}\left[\left(\widehat{f}\left(x_{0}\right)-\mathrm{E} \widehat{f}\left(x_{0}\right)\right)^{2}\right]=\mathrm{E} \epsilon^{2}=\sigma^{2} .
$$

- If we use more "neighbouring" points, say k, the variance would reduce to approximately σ^{2} / k. But the bias ${ }^{2}$ will increase as neighbours are far away from x_{0}.

Model Complexity

- A related concept is the model complexity
- In linear regression, this is simply the degrees of freedom
- For $k \mathrm{NN}, k$ determines the model complexity
- e.g., when $k=N$, this is just the sample mean, and the model is very simple

Model Complexity, over- and under-fitting

- Model complexity \uparrow (small k) \longrightarrow Bias $^{2} \downarrow$ and Variance \uparrow
- Model complexity \downarrow (large $k) \longrightarrow$ Bias $^{2} \uparrow$ and Variance \downarrow

Prevent over-fitting

- As we can see, model complexity, bias-variance trade-off and over- and under-fitting are usually related concepts
- Over-fitting happens when a model performs well on the training data, but not on the testing data
- How to choose k to prevent over-fitting?

k-fold Cross-validation

- Randomly split the data into 10 portions
- Fit the model using 9 portions as training data
- Calculate the testing error using the remaining portion
- Alternate the testing set and average all testing errors

k-fold Cross-validation

- Cross-validation has many variations
- A k-fold cross-validation is random and the result can be affected by the randomness
- We could repeatedly run k-fold cross-validation several times
- Leave-one-out cross-validation is deterministic, but takes longer to run
- Repeated random sub-sampling is another choice

Model Complexity

Degrees-of-freedom and Model Complexity

- Degrees-of-freedom and model complexity are related concepts, and they can be used to prevent over-fitting
- For $k \mathrm{NN}$, the tuning parameter k directly controls both
- For some other models, a penalized framework is used to control complexity

$$
\underset{f}{\arg \min } \operatorname{loss}(f)+\lambda \operatorname{complexity}(f)
$$

- More examples: Lasso, Ridge, tree models, etc.

Degrees-of-freedom

- Sometime the model complexity can be measured using the degrees-of-freedom, e.g., ℓ_{0} penalty
- In linear regression, the degrees-of-freedom is the number of variables used in the model
- A more general definition is

$$
\operatorname{df}(\widehat{f})=\frac{1}{\sigma^{2}} \sum_{i=1}^{n} \operatorname{Cov}\left(\widehat{Y}_{i}, Y_{i}\right)
$$

- Treat $X_{i}=x_{i}$'s as fixed values, not random
- $1 / \sigma^{2}$ takes care of the variance of the random error term

Example

- If we let $\widehat{\mathbf{Y}}=\left(\widehat{Y}_{1}, \ldots, \widehat{Y}_{n}\right)$ and $\mathbf{Y}=\left(Y_{1}, \ldots, Y_{n}\right)$, we can rewrite the definition as

$$
\operatorname{df}(\widehat{f})=\frac{1}{\sigma^{2}} \operatorname{Trace}(\operatorname{Cov}(\widehat{\mathbf{Y}}, \mathbf{Y}))
$$

- This can be convenient for linear regression

Example

We can easily verify several cases:

- For $1 \mathrm{NN}, \mathrm{df}=n$
- If $\widehat{y}_{i}=\bar{y}$, i.e., $n \mathrm{NN}$, then $\mathrm{df}=1$
- For linear regression, df $=p$
- For $k \mathbf{N N}$, $\mathrm{df}=n / k$

The formula works for kernel methods too.

$k N N$ for Classification

$k N N$ for Classification

For hard classification, the most prevalent class in $N_{k}\left(x_{0}\right)$ is used

$$
\widehat{y}=\underset{c \in C}{\arg \max } \sum_{x_{i} \in N_{k}\left(x_{0}\right)} \mathbf{1}\left\{y_{i}=c\right\},
$$

An example from the HTF textbook. (BLUE $=0, \mathrm{ORANGE}=1$)

Voronoi Tessellation

Similar to the regression case, the k-NN classification model does majority vote (the most prevalent class) within the neighborhood of a target point x. 1NN plot is a Voronoi tessellation

Example

We fit k-NN classification model to the example. Of course, we would not expect 1 NN to perform well...

1-Nearest Neighbour

15-Nearest Neighbour

k-Nearest Neighbour in Classification

As we further increase k, the model tends to be less complex. Compare 66NN with a linear model that uses only 3 parameters.

66-Nearest Neighbour

Linear Regression of 0/1 Response

1NN Error Bound

- 1NN error is no more than twice of the Bayes error, as $n \rightarrow \infty$
- As $n \rightarrow \infty$, we have $d\left(x_{0}, x_{1 n n}\right) \rightarrow 0$, where $x_{1 n n}$ is the closest neighbor of x_{0}. and we may assume that $\mathrm{P}\left(Y \mid x_{1 n n}\right) \rightarrow \mathrm{P}\left(Y \mid x_{0}\right)$
- The error of 1 NN is

$$
\begin{aligned}
& \mathrm{P}\left(Y=1 \mid x_{0}\right)\left[1-\mathrm{P}\left(Y=1 \mid x_{1 n n}\right)\right]+\left[1-\mathrm{P}\left(Y=1 \mid x_{0}\right)\right] \mathrm{P}\left(Y=1 \mid x_{1 n n}\right) \\
\leq & {\left[1-\mathrm{P}\left(Y=1 \mid x_{1 n n}\right)\right]+\left[1-\mathrm{P}\left(Y=1 \mid x_{0}\right)\right] } \\
\approx & 2\left[1-\mathrm{P}\left(Y=1 \mid x_{0}\right)\right] \\
= & 2 \times \text { Bayes Error }
\end{aligned}
$$

- This is a very crude bound, but it shows that if the noise is small, 1NN may be reasonable.

Remarks

Remarks

- $k N N$ vs. linear model
- Distance measure
- Computational issue
- Curse of dimensionality
- Double descent

k-Nearest Neighbour vs. Linear Regression

- The goal is to approximate $f(x)=\mathrm{E}(Y \mid X=x)$
- Linear regression makes a structural assumption: f is linear.
- low variance: Number of parameters is p (fixed); we know that when sample size n grows, the variance of $\widehat{\boldsymbol{\beta}}$ is $\propto 1 / n$.
- high bias (underfit): linear assumption is very restrictive
- k NN makes on assumption on f, except some smoothness.
- low bias (overfit): flexible and adaptive. It can be shown that as if $k \rightarrow \infty$ and $n / k \rightarrow 0, k \mathrm{NN}$ is consistent.
- high variance: number of parameters for $k \mathrm{NN}$ is roughly n / k;

k-Nearest Neighbour in Classification

An "U" shaped prediction error curve is again observed for the testing sample (Figure from HTF):

Distance measures

- Closeness between two points needs to be defined based on some distance measures
- By default, we use Euclidean distance (ℓ_{2} norm) for continuous variables

$$
d^{2}(\boldsymbol{u}, \boldsymbol{v})=\|\boldsymbol{u}-\boldsymbol{v}\|_{2}^{2}=\sum_{i=1}^{p}\left(u_{i}-v_{i}\right)^{2}
$$

Hence the neighbourhood is not invariant to the scaling of the variables.

Scaling issues

- We often scale the variables marginally when using $k \mathrm{NN}$, so that the distance is

$$
d^{2}(\boldsymbol{u}, \boldsymbol{v})=\sum_{j=1}^{p} \frac{\left(u_{i}-v_{i}\right)^{2}}{\sigma_{j}^{2}}
$$

where σ_{j}^{2} is the variance of variable j.

- Mahalanobis distance is also scale-invariant and takes care of correlation

$$
d^{2}(\boldsymbol{u}, \boldsymbol{v})=(\boldsymbol{u}-\boldsymbol{v})^{\top} \Sigma^{-1}(\boldsymbol{u}-\boldsymbol{v})
$$

where Σ is a covariance matrix.

- Hamming distance is usually used for categorical variables

Example: Handwritten Digit Recognition Data

- Digits 0-9 scanned from envelopes by the U.S. Postal Service
- 7291 training samples, 2007 testing samples
- Apply $k \mathrm{NN}$ and calculate the errors
- 1NN with Euclidean distance gives 5.6% error rate
- 1NN with tangent distance (Simard et al., 1993) gives 2.6% error

Computational Issue

- Need to store the entire training data for future prediction
- Prediction can be slow. Needs to calculate the distance from x_{0} to all training sample and sort them.
- Some fast nearest neighbor search algorithms such as kd-tree
- A distance measure may affect accuracy

Curse of dimensionality

- High-dimension low sample size ($p \gg n$)
- The resolution of the handwritten digit example is $16 \times 16=256$
- Some common imaging data in medical are 1024×1024 while only a few hundred samples are available
- Strategy games (Go, StarCraft, etc.) may have a huge number of variables
- Curse of Dimensionality
- For fixed n, as p increases, the data become sparse
- As p increases, the number of possible models explodes (computation burden, variable selection necessary)

Curse of Dimensionality

- The curse of dimensionality is well illustrated by a subcubical neighborhood for uniform data in a unit cube.
- Suppose the sample points are evenly spread out on $[0,1]^{p}$, and we want to fit $k=10$ nearest neighbors with $n=1000$. Let l be the edge length of the hyper-cube that contains all k-nearest neighbor of a test point. How big is l ?

- $l^{p} \approx \frac{k}{n}$
- When $p=2, l=0.1$
- When $p=10, l=0.63$
- When $p=100, l=0.955$

Curse of Dimensionality

- Suppose we have sample points evenly spread out on $[0,1]$
- In ten dimensions we need to cover 80% of the range of each coordinate to capture 10\% of the data.

Low Dimensional Structure

- However, in the previous handwritten digit problem, KNN seems to work pretty well. Why?
- There is potential lower dimensional subspace (manifold).
- Total volume of the data is much reduced - there are more samples within the neighborhood of an existing sample

Double Descent

- Recent research shows that the bias-variance trade-off may not be everything
- E.g., deep learning models are always over-parameterized. However, they still have good performance.

Belkin, et al. "Reconciling modern machine-learning practice and the classical bias-variance trade-off." PNAS (2019)

