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K-Nearest Neighbour



Regression Models

• Let’s consider a regression model,

Y = f(X) + ε,

where E(ε) = 0 and Var(ε) = σ2.

• Collect a set of i.i.d. training data Dn = {xi, yi}ni=1

• From Dn, estimate the regression function as f̂ (“f -hat”).

• Predict the value of testing data Y at a target point x0.
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k-Nearest Neighbour

• k-Nearest Neighbour (kNN) is a nonparametric method that
predicts a target point x0 with the average of nearby
observations in the training data

• For regression, the prediction at a given target point x0 is

ŷ =
1

k

∑
xi∈Nk(x0)

yi,

where Nk(x) defines a set of k samples from the training data (in
terms of their feature values) that are closest to x0.

• Can also be used for classification
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Example

Data with only 1 feature from uniform[0, 2π]. The true model (blue) is

Y = 2 sin(X) + ε,

where ε is standard normal error. We fit the data with 1NN.
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k-Nearest Neighbour in Regression

Simulate 200 observations, and see how the model changes over k.
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k-Nearest Neighbour in Regression

Simulate 200 observations, and see how the model changes over k.
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2−Nearest Neighbor Regression
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k-Nearest Neighbour in Regression

The model becomes “smoother” as k increases. However, this
eventually deviates from the truth if k is too large.
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33−Nearest Neighbor Regression
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The Bias-variance Trade-off



Variance

• We can see when k is small, the estimated model is unstable.

• Also, each time we observe a new training data, we may get a
very different estimation. (due to the closest sample and ε)

• The statistical quantity to describe this property is the variance of
the estimator f̂ .

• For a target point x0, variance of f̂(x0) is

Var
(
f̂(x0)

)
= E

[(
f̂(x0)− Ef̂(x0)

)2]

8/39



Bias

• When k is large, the estimated model eventually deviates
(systematically) from the truth.

• The statistical quantity to describe this property is the bias of the
estimator f̂ .

• For a target point x0, bias of f̂(x0) is

Bias
(
f̂(x0)

)
= f(x0)− Ef̂(x0)
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An accurate prediction

• Using squared-error loss, the prediction error is

Err(x0)

= EDn,Y0

[(
Y0 − f̂(x0)

)2]
= EDn,Y0

[(
Y0 − f(x0) + f(x0)− EDn f̂(x0) + EDn f̂(x0)− f̂(x0)

)2]
= . . .

= EY0

[(
Y0 − f(x0)

)2]︸ ︷︷ ︸
Irreducible Error

+
(
f(x0)− EDn f̂(x0)

)2
︸ ︷︷ ︸

Bias2

+EDn

[(
f̂(x0)− EDn f̂(x0)

)2]︸ ︷︷ ︸
Variance

• All the cross terms are zero
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An accurate prediction

• The prediction error is a sum of three terms

• E[(Y − f(x))2] = σ2 is the irreducible error term that cannot be
avoided, because we cannot predict ε

• Of course, we want to minimize both Bias2 and the Variance,
however, this is not always possible...
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An accurate prediction

• The first instinct is that one should minimize the bias2 term
E[(f(x0)− Ef̂(x))2]

• Why producing a model that is asymptotically incorrect, i.e.,
f(x0) 6= Ef̂(x)?

• This instinct is wrong! — This is usually at the expense of high
variance, which eventually damages the prediction
performance...

• We already see this with 1NN
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An accurate prediction

• 1NN has small Bias2, as the closet neighbor converges to the
target point x0 as n→∞

• However, the variance is large because the estimator only uses
one observation

E
[
(f̂(x0)− Ef̂(x0))2

]
= Eε2 = σ2.

• If we use more “neighbouring” points, say k, the variance would
reduce to approximately σ2/k. But the bias2 will increase as
neighbours are far away from x0.
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Model Complexity

• A related concept is the model complexity

• In linear regression, this is simply the degrees of freedom

• For kNN, k determines the model complexity

• e.g., when k = N , this is just the sample mean, and the model is
very simple
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Model Complexity, over- and under-fitting

• Model complexity ↑ (small k) −→ Bias2 ↓ and Variance ↑

• Model complexity ↓ (large k) −→ Bias2 ↑ and Variance ↓
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Prevent over-fitting

• As we can see, model complexity, bias-variance trade-off and
over- and under-fitting are usually related concepts

• Over-fitting happens when a model performs well on the training
data, but not on the testing data

• How to choose k to prevent over-fitting?
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k-fold Cross-validation

• Randomly split the data into 10 portions

• Fit the model using 9 portions as training data

• Calculate the testing error using the remaining portion

• Alternate the testing set and average all testing errors
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k-fold Cross-validation

• Cross-validation has many variations

• A k-fold cross-validation is random and the result can be affected
by the randomness

• We could repeatedly run k-fold cross-validation several times

• Leave-one-out cross-validation is deterministic, but takes longer
to run

• Repeated random sub-sampling is another choice
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Model Complexity



Degrees-of-freedom and Model Complexity

• Degrees-of-freedom and model complexity are related concepts,
and they can be used to prevent over-fitting

• For kNN, the tuning parameter k directly controls both

• For some other models, a penalized framework is used to control
complexity

arg min
f

loss(f) + λ complexity(f)

• More examples: Lasso, Ridge, tree models, etc.
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Degrees-of-freedom

• Sometime the model complexity can be measured using the
degrees-of-freedom, e.g., `0 penalty

• In linear regression, the degrees-of-freedom is the number of
variables used in the model

• A more general definition is

df(f̂ ) =
1

σ2

n∑
i=1

Cov(Ŷi, Yi)

• Treat Xi = xi’s as fixed values, not random

• 1/σ2 takes care of the variance of the random error term

20/39



Example

• If we let Ŷ = (Ŷ1, . . . , Ŷn) and Y = (Y1, . . . , Yn), we can rewrite
the definition as

df(f̂ ) =
1

σ2
Trace

(
Cov(Ŷ,Y)

)
• This can be convenient for linear regression
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Example

We can easily verify several cases:

• For 1NN, df = n

• If ŷi = y, i.e., nNN, then df = 1

• For linear regression, df = p

• For kNN, df = n/k

The formula works for kernel methods too.

22/39



kNN for Classification



kNN for Classification

For hard classification, the most prevalent class in Nk(x0) is used

ŷ = arg max
c∈C

∑
xi∈Nk(x0)

1{yi = c},

An example from the HTF textbook. (BLUE = 0, ORANGE = 1)
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Voronoi Tessellation

Similar to the regression case, the k-NN classification model does
majority vote (the most prevalent class) within the neighborhood of a
target point x. 1NN plot is a Voronoi tessellation
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Example

We fit k-NN classification model to the example. Of course, we would
not expect 1NN to perform well...

  

  

  

  

  

  

  

  
  

  

  

  

1−Nearest Neighbour
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15−Nearest Neighbour
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k-Nearest Neighbour in Classification

As we further increase k, the model tends to be less complex.
Compare 66NN with a linear model that uses only 3 parameters.
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1NN Error Bound

• 1NN error is no more than twice of the Bayes error, as n→∞

• As n→∞, we have d(x0, x1nn)→ 0, where x1nn is the closest
neighbor of x0. and we may assume that P(Y |x1nn)→ P(Y |x0)

• The error of 1NN is

P(Y = 1|x0)[1− P(Y = 1|x1nn)] + [1− P(Y = 1|x0)]P(Y = 1|x1nn)

≤ [1− P(Y = 1|x1nn)] + [1− P(Y = 1|x0)]

≈ 2[1− P(Y = 1|x0)]

= 2× Bayes Error

• This is a very crude bound, but it shows that if the noise is small,
1NN may be reasonable.
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Remarks



Remarks

• kNN vs. linear model

• Distance measure

• Computational issue

• Curse of dimensionality

• Double descent
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k-Nearest Neighbour vs. Linear Regression

• The goal is to approximate f(x) = E(Y |X = x)

• Linear regression makes a structural assumption: f is linear.
– low variance: Number of parameters is p (fixed); we know that

when sample size n grows, the variance of β̂ is ∝ 1/n.

– high bias (underfit): linear assumption is very restrictive

• kNN makes on assumption on f , except some smoothness.
– low bias (overfit): flexible and adaptive. It can be shown that as if

k →∞ and n/k → 0, kNN is consistent.

– high variance: number of parameters for kNN is roughly n/k;
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k-Nearest Neighbour in Classification

An “U” shaped prediction error curve is again observed for the testing
sample (Figure from HTF):

Elements of Statistical Learning (2nd Ed.) c©Hastie, Tibshirani & Friedman 2009 Chap 2
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FIGURE 2.4. Misclassification curves for the simula-
tion example used in Figures 2.1, 2.2 and 2.3. A single
training sample of size 200 was used, and a test sample
of size 10, 000. The orange curves are test and the blue
are training error for k-nearest-neighbor classification.
The results for linear regression are the bigger orange
and blue squares at three degrees of freedom. The pur-
ple line is the optimal Bayes error rate.
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Distance measures

• Closeness between two points needs to be defined based on
some distance measures

• By default, we use Euclidean distance (`2 norm) for continuous
variables

d2(u,v) = ‖u− v‖22 =

p∑
i=1

(ui − vi)2

Hence the neighbourhood is not invariant to the scaling of the
variables.
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Scaling issues

• We often scale the variables marginally when using kNN, so that
the distance is

d2(u,v) =

p∑
j=1

(ui − vi)2

σ2
j

where σ2
j is the variance of variable j.

• Mahalanobis distance is also scale-invariant and takes care of
correlation

d2(u,v) = (u− v)TΣ−1(u− v),

where Σ is a covariance matrix.

• Hamming distance is usually used for categorical variables
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Example: Handwritten Digit Recognition Data

• Digits 0-9 scanned from envelopes by the U.S. Postal Service

• 7291 training samples, 2007 testing samples

• Apply kNN and calculate the errors

• 1NN with Euclidean distance gives 5.6% error rate

• 1NN with tangent distance (Simard et al., 1993) gives 2.6% error
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Computational Issue

• Need to store the entire training data for future prediction

• Prediction can be slow. Needs to calculate the distance from x0
to all training sample and sort them.

• Some fast nearest neighbor search algorithms such as kd-tree

• A distance measure may affect accuracy

34/39



Curse of dimensionality

• High-dimension low sample size (p� n)
– The resolution of the handwritten digit example is 16× 16 = 256

– Some common imaging data in medical are 1024× 1024 while only
a few hundred samples are available

– Strategy games (Go, StarCraft, etc.) may have a huge number of
variables

• Curse of Dimensionality
– For fixed n, as p increases, the data become sparse

– As p increases, the number of possible models explodes
(computation burden, variable selection necessary)
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Curse of Dimensionality

• The curse of dimensionality is well illustrated by a subcubical
neighborhood for uniform data in a unit cube.

• Suppose the sample points are evenly spread out on [0, 1]p, and
we want to fit k = 10 nearest neighbors with n = 1000. Let l be
the edge length of the hyper-cube that contains all k-nearest
neighbor of a test point. How big is l?

Elements of Statistical Learning (2nd Ed.) c©Hastie, Tibshirani & Friedman 2009 Chap 2
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FIGURE 2.6. The curse of dimensionality is well il-
lustrated by a subcubical neighborhood for uniform data
in a unit cube. The figure on the right shows the
side-length of the subcube needed to capture a fraction
r of the volume of the data, for different dimensions p.
In ten dimensions we need to cover 80% of the range
of each coordinate to capture 10% of the data.

• lp ≈ k
n

• When p = 2, l = 0.1

• When p = 10, l = 0.63

• When p = 100, l = 0.955
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Curse of Dimensionality

• Suppose we have sample points evenly spread out on [0, 1]

• In ten dimensions we need to cover 80% of the range of each
coordinate to capture 10% of the data.

Elements of Statistical Learning (2nd Ed.) c©Hastie, Tibshirani & Friedman 2009 Chap 2
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r of the volume of the data, for different dimensions p.
In ten dimensions we need to cover 80% of the range
of each coordinate to capture 10% of the data.
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Low Dimensional Structure

• However, in the previous handwritten digit problem, KNN seems
to work pretty well. Why?

• There is potential lower dimensional subspace (manifold).

• Total volume of the data is much reduced — there are more
samples within the neighborhood of an existing sample
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Double Descent

• Recent research shows that the bias-variance trade-off may not
be everything

• E.g., deep learning models are always over-parameterized.
However, they still have good performance.

Belkin, et al. “Reconciling modern machine-learning practice and the classical
bias–variance trade-off.” PNAS (2019)
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