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» The Dishonest Casino Example

« Hidden Markov Models

2/27



The Dishonest Casino Example

* An example taken from Durbin et. al. (1999).

A dishonest casino uses two dice, one of them is fair and the
other one is loaded.

FaCe/PrOb “1 ” “2” i‘3” “4” “5” “6”
Fair Die : 3 3 5 % 3
Loaded Die 5 + 1+ & 15 &

» The observer doesn’t know which die is actually taken (the state
is hidden), but the sequence of throws (observations) can be

used to infer which die (state) was used.
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The Dishonest Casino Example
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Hidden Markov Model

+ Consider a Hidden Markov Model (HMM) for
(Z2,X)=(Z1,...,Zn, X1,...,X,) Where X;’s are observed (face
of a dice) and Z;’s are hidden (fair or loaded). Let's assume that
both Z and X are discrete random variables, taking .. and .,
possible values, respectively. So the HMM is parameterized by
0 = (w, A, B) where

* wm, x1: distribution for Z;, an initial stage.
o A xm.: the transition probability matrix from Z, to Z; 1.

* Bum.xm,: the probability matrix (the emission distribution) for
observing X, under each hidden stage Z;.

* The behavior of a HMM is fully determined by the three
probabilities w, A, and 3, and implicitly .. and ..
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Hidden Markov Model
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Elements of a HMM

* For the Dishonest Casino Example, we have

* m,=2,mzy =06

., 098 0.02
~ [0.05 0.95
i1 1 1 1 1
m=|0 7 § 0§ ;
1 10 10 10 10 2
+ w = (3, 3), equal probabilities if no strong prior believe

» We can calculate the probabilities of the observed data based on
any given parameter value.
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Modeling the data

» How to model the data and detect the underlying states (which
die was used)?

» The underlying states {Z;,t = 1,...,n} is a markov chain, that
satisfies the following assumptions:

» The memoryless assumption:
P(Zi|Zs—1,. .., Z1) = P(Ze|Zs—1)
» The stationary assumption:

p(Zt|Zt_1) = p(Z2|Z1), fort = 2, 000gll
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Modeling the data

* The log-likelihood on the observed data is given by
log [p(x]6)] = log [Zp x,7|0) }
=log [Zp z|6)p X|Z70)]
which is very hard to optimize due to the summation inside the

log (generally not convex).

» Note: here x and z are the observed vectors of the sequences X
and Z, respectively.

* The the Baum-Welch algorithm is developed to solve this
problem. It uses the EM algorithm and the forward-backward
algorithm.
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EM algorithm (discrete):

« E-step: Under the current value of 6, denoted as 8%, find
p(z|x,0)), the distribution of the unobserved variables given
the observed data and 8(*). Then calculate:

9(0) = Ez|x o log p(x, Z(0)
= Z p(Z = Z|X7 g(k)) IOg p(X, Z|0)

+ M-step: Re-estimate the parameter 6 to maximize ¢(0):

6%+ = arg max ¢(0)
0

+ How to calculate p(z|x, 8*)) for our HMM problem?
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» E-step: we first write out the log-likelihood of the complete data:
log p(z, x|0)

n—1 n
= log {p(21) [I pGeiilze, -, 21,0) [ p(@ilz, - - ,21,9)}

t=1 t=1

* Recall the memoryless and stationary assumptions, this can be

simplified into
log p(z, x|0)
n—1 n
= logw(z) + Z log A(zt, ze41) + Zlog B(zt, z4)
t=1 t=1

* Note that 0 = (w, A, B)
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» We then try to integrate it over all possible values of Z, based on
a current iteration value 0():

Ez|x 6 log p(x, Z[0)

+ To calculate this expectation, we need the conditional distribution
of Z| X, 0", which is just the conditional expectations:

Ye(i,§) = P(Zs = 4, Ze1 = 5]%,0)
V(i) = p(Z; = ifx,0%))
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» Suppose we already have the +; values, the E-step is:
IEZ|x,0(’€) Ing(Xv Z|0)

n—1 n
=Ezx,0 [logw(Zl) + Z log A(Zy, Zy41) + Z log B(Z;, $t):|
=1

n—1 m,

= Z% Yogw(i) + ) Y 7ili, j)log A(i, )
t=14,5=1

n m;

—i—ZZ% log B(i, x+)

« If we can compute each v;(7, j) and 7. (i), this step is done.
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At the M-step, we update the parameters 6 = (w, A, B)

w(kﬂ)(i):*yl(i), 8= 1000,
n—1 ..
A 5y = Zt:;_zt(l“?). , Gi=1,...,my;
Zj’ Dot (i, 57)
o 7
B+ (g ) = Zetimemt 11(0) i= 1o may =1, ma.

21 7e(8)

» They are just the MLE estimators obtained by pooling and
averaging a particular transition/emission event.

* For example, B(i,!1) is observing X = [ if the state is Z = i, so we
go through all events with Z = i in the entire chain, and average
the events where X = [ is observed to get the probability.

14/27



Forward-Backward Algorithm

* In both steps, we need to calculate the conditional probabilities
(i, 5) = P(Ze = i, Ziga = jIx,6%),

which is the conditional probability of transiting from state ¢ to
state j at time point ¢ given all the observed data x, and

Y (1) = p(Z; = ilx, g(k)%

the conditional probability of being at state ¢ at time point ¢ given
all the observed data x.

« We will use a forward-backward algorithm to calculate this.
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Forward-Backward Algorithm

« With no risk of ambiguity, we will omit 6% from the notation, i.e.,
p is always py)

» For ~(i,7), by Bayes’ theorem, we have

V(i) = P(Zi = i, Zip1 = jIx)
o P(X1:45 Zt = 1, Ziy1 = J, Teq1, X (t42)in)
= p(X1:t, Zt = 9) X p(Zi11 = jlZs = 1)
o () A(i,4)

X P(Ti41|Zi41 = J) X P(X(t42)im| Ze41 = J)

B(j,xt+1) Be+1(5)

= o (1) A(4, §)B(F, ®e41) Bi+1(5)
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Forward-Backward Algorithm

* a;(i) = p(x1.4, Z; = 1) is the forward probability of observing x; .,
and having state 7 at time ¢;

* Biv1(3) = P(X(t+2):n|Zi41 = 7) is the backward probability of
observing x(;42)., given state j at time t.

» Note: «4(7) is a joint probability, and S;1(j) is a conditional
probability.

» How to calculate oy (i) and S;11(j)? We do this recursively
starting from the two end points t = 1 and ¢ = n.
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Forward Probability

* For the first time point ¢ = 1:
a1 (i) = p(z1, 21 =4) = w(i)B(i, z1),

+ For each ¢, we can then calculate the next time point a1 (7)
using the information of a(7):

Oét+1(7:) = p(.’El, Ce ,1't+17 Zt+1 = Z)

= Zp(xlv--thﬂ,Zt = jy Zt41 = 1)
J

(exhaust all states of Z; in the previous t)

= Y p(x1t, Zi = §)p(Zip1 = il Zi = §)P(xe11|Zesa = 0)
J

= 3 au)AG, )Bli,ar4)
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Backward Probability

« For the last time point t = n, 8, (i) = p(Xn+1|Z, = 1), but we
don’t have x,,.1 (no information). Hence, to not inject any
artificial information, we should let

ﬂn(z) =1

meaning that we must observe x,,; anyway at the last step.
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Backward Probability

« Then we recursively calculate 3;_1(¢) in the previous state:

Bi-1(i) = p(x4, ..., &n|Zs—1 = 1)
= Zp(xt7"'axn7zt :j|Zt—1 :Z>

(exhaust all states of Z; in the next ¢)

= Zp Zy = jlZi—1 = )p(x4| 2 = §)P(Xes1:n| 22 = j)

= ZAZJ (4, 1) Be ()
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Forward-Backward Algorithm

« Finally, the conditional probability ~:(i, j) needs to be normalized
by the marginal probability to be a proper distribution:

i §) = a(1)A(1, j) B(j, Te41) Bev1(5)
’ > 2 (DA, 5)B(J, 2e41) Be1 ()

* Note that this is a joint probability, so we divide by the sum of all
cases.

+ This concludes the calculation of ~;(z, 7).
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Forward-Backward Algorithm

« Similarly, we can calculate 4:(7) using Bayes’ Theorem

Y (i) = p(Z: = i|x)
x p(Zy = i,x)
= P(Z; = 1, X1:t)P(Xe41:n| 2t = 1, X1:1)
=P(Zt = i,X1:)P(Xt41:0| Z¢ = 1)
= (i) B (4)

» Hence, after normalization, this is a proper distribution

L aBG)
= 08O

» This concludes all the components needed in the EM algorithm.
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Inference on the Hidden States Z

» There are several ways to find the “optimal” hidden state
sequence Z given an observation sequence x, depending on the
definition of “optimality”.

« One criterion is to choose the hidden states Z,’s that are
individually most likely at the time point ¢, that is

Z; = argmaxp(Z; = i|x,0) = arg maxy, (i).
(2 K3

* Here we can plug in 6 from the aforementioned EM algorithm
and simply get the argmax.
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Inference on the Hidden States Z

 Such a solution is optimal in the sense that it maximizes the
expected number of correct states (by choosing the most likely
state for each ).

» However, the resulting sequence may not be the most likely one
and it may not even be a valid sequence. For example, if Z has
three states (instead of 2), and the transition probability
A(1,3) = 0 (impossible to transit from 1 to 3), but it is still
possible to have

Z; =1 and Z;Zrl =%
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Inference on the Hidden States Z

» An alternative approach is to find the most likely single
sequence, i.e.,

Z* = argmax p(Z = z|x,0).

Z1:n

* Note that maximizing this is the same as maximizing

~

p(Z =z,x|0) wrt z,

+ Solving this with brute force will cost 2" number of tries, which is
almost impossible. Hence, we need some sophisticated
algorithm. A dynamic programming method called Viterbi
algorithm was proposed for this.

» An example of dynamic programming: Fibonacci series
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Inference on the Hidden States Z

+ Define a maximizing sequence z;.; up to time ¢, which ends with
z+ = i. The associated probability is

p(i) = max p(Zyi—1) = Z1:(t—1), Z¢ = 1, X1:¢|0)

Zy:(t—1)

which is the highest probability along a single path from 1 to ¢
that ends up at state 7, = i, given the observed sequence and
the parameter estimation.

26/27



Inference on the Hidden States Z

« Realizing that (with 6 omitted)

pt+1(4)

rglax P(Z1:4; Zi41 = 4, X1:(t+1) 10)
186

= Inax {P(le(tfl), Zy = Zt,Xl:t\a)P(Zt+1|Zt,5)D($t+1|2’t+1, 5)}

Zy:¢

{ mase s (1) AL } Bl )

+ By induction, we can solve the entire sequence.
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