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• The Dishonest Casino Example
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The Dishonest Casino Example

• An example taken from Durbin et. al. (1999).

• A dishonest casino uses two dice, one of them is fair and the
other one is loaded.

Face/Prob “1” “2” “3” “4” “5” “6”

Fair Die 1
6

1
6

1
6

1
6

1
6

1
6

Loaded Die 1
10

1
10

1
10

1
10

1
10

1
2

• The observer doesn’t know which die is actually taken (the state
is hidden), but the sequence of throws (observations) can be
used to infer which die (state) was used.
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The Dishonest Casino Example
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Hidden Markov Model

• Consider a Hidden Markov Model (HMM) for
(Z,X) = (Z1, . . . , Zn, X1, . . . , Xn) where Xi’s are observed (face
of a dice) and Zi’s are hidden (fair or loaded). Let’s assume that
both Z and X are discrete random variables, taking mz and mx

possible values, respectively. So the HMM is parameterized by
θ = (w,A,B) where

• wmz×1: distribution for Z1, an initial stage.

• Amz×mz : the transition probability matrix from Zt to Zt+1.

• Bmz×mx : the probability matrix (the emission distribution) for
observing Xt under each hidden stage Zt.

• The behavior of a HMM is fully determined by the three
probabilities w, A, and B, and implicitly mz and mx.
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Hidden Markov Model

Latent Z1 Z2 Z3 Zn

Observed X1 X2 X3 Xn

. . .. . .

. . .

Fair Die Loaded Die
0.02

0.05

0.98 0.95
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Elements of a HMM

• For the Dishonest Casino Example, we have
• mz = 2, mx = 6

• A =

[
0.98 0.02

0.05 0.95

]

• B =

[
1
6

1
6

1
6

1
6

1
6

1
6

1
10

1
10

1
10

1
10

1
10

1
2

]

• w =
(
1
2
, 1
2

)
, equal probabilities if no strong prior believe

• We can calculate the probabilities of the observed data based on
any given parameter value.
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Modeling the data

• How to model the data and detect the underlying states (which
die was used)?

• The underlying states {Zt, t = 1, . . . , n} is a markov chain, that
satisfies the following assumptions:

• The memoryless assumption:

p(Zt|Zt−1, . . . , Z1) = p(Zt|Zt−1)

• The stationary assumption:

p(Zt|Zt−1) = p(Z2|Z1), for t = 2, . . . , n
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Modeling the data

• The log-likelihood on the observed data is given by

log
[
p(x|θ)

]
= log

[∑
z

p(x, z|θ)
]

= log
[∑

z

p(z|θ)p(x|z,θ)
]

which is very hard to optimize due to the summation inside the
log (generally not convex).

• Note: here x and z are the observed vectors of the sequences X

and Z, respectively.

• The the Baum-Welch algorithm is developed to solve this
problem. It uses the EM algorithm and the forward-backward
algorithm.
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EM algorithm (discrete):

• E-step: Under the current value of θ, denoted as θ(k), find
p(z|x,θ(k)), the distribution of the unobserved variables given
the observed data and θ(k). Then calculate:

g(θ) = EZ|x,θ(k) logp(x,Z|θ)

=
∑
z

p(Z = z|x,θ(k)) logp(x, z|θ)

• M-step: Re-estimate the parameter θ to maximize g(θ):

θ(k+1) = argmax
θ

g(θ)

• How to calculate p(z|x,θ(k)) for our HMM problem?
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EM algorithm

• E-step: we first write out the log-likelihood of the complete data:

logp(z,x|θ)

= log

{
p(z1)

n−1∏
t=1

p(zt+1|zt, · · · , z1,θ)
n∏

t=1

p(xt|zt, · · · , z1,θ)
}

• Recall the memoryless and stationary assumptions, this can be
simplified into

logp(z,x|θ)

= logw(z1) +

n−1∑
t=1

logA(zt, zt+1) +

n∑
t=1

logB(zt, xt)

• Note that θ = (w,A,B)
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EM algorithm

• We then try to integrate it over all possible values of Z, based on
a current iteration value θ(k):

EZ|x,θ(k) logp(x,Z|θ)

• To calculate this expectation, we need the conditional distribution
of Z|X,θ(k), which is just the conditional expectations:

γt(i, j) = p(Zt = i, Zt+1 = j|x,θ(k))

γt(i) = p(Zt = i|x,θ(k))
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EM algorithm

• Suppose we already have the γt values, the E-step is:

EZ|x,θ(k) log p(x,Z|θ)

= EZ|x,θ(k)

[
logw(Z1) +

n−1∑
t=1

logA(Zt, Zt+1) +

n∑
t=1

logB(Zt, xt)
]

=

mz∑
i=1

γ1(i) logw(i) +

n−1∑
t=1

mz∑
i,j=1

γt(i, j) logA(i, j)

+

n∑
t=1

mz∑
i

γt(i) logB(i, xt)

• If we can compute each γt(i, j) and γt(i), this step is done.
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EM algorithm

• At the M-step, we update the parameters θ = (w,A,B)

w(k+1)(i) = γ1(i), i = 1, . . . ,mz;

A(k+1)(i, j) =

∑n−1
t=1 γt(i, j)∑

j′
∑n−1

t=1 γt(i, j′)
, i, j = 1, . . . ,mz;

B(k+1)(i, l) =

∑
t:xt=l γt(i)∑n
t=1 γt(i)

, i = 1, . . . ,mz, l = 1, . . . ,mx.

• They are just the MLE estimators obtained by pooling and
averaging a particular transition/emission event.

• For example, B(i, l) is observing X = l if the state is Z = i, so we
go through all events with Z = i in the entire chain, and average
the events where X = l is observed to get the probability.
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Forward-Backward Algorithm

• In both steps, we need to calculate the conditional probabilities

γt(i, j) = p(Zt = i, Zt+1 = j|x, θ(k)),

which is the conditional probability of transiting from state i to
state j at time point t given all the observed data x, and

γt(i) = p(Zt = i|x, θ(k)),

the conditional probability of being at state i at time point t given
all the observed data x.

• We will use a forward-backward algorithm to calculate this.
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Forward-Backward Algorithm

• With no risk of ambiguity, we will omit θ(k) from the notation, i.e.,
p is always pθ(k)

• For γt(i, j), by Bayes’ theorem, we have

γt(i, j) = p(Zt = i, Zt+1 = j|x)
∝ p(x1:t, Zt = i, Zt+1 = j, xt+1,x(t+2):n)

= p(x1:t, Zt = i)︸ ︷︷ ︸
αt(i)

×p(Zt+1 = j|Zt = i)︸ ︷︷ ︸
A(i,j)

× p(xt+1|Zt+1 = j)︸ ︷︷ ︸
B(j,xt+1)

×p(x(t+2):n|Zt+1 = j)︸ ︷︷ ︸
βt+1(j)

△
= αt(i)A(i, j)B(j, xt+1)βt+1(j)
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Forward-Backward Algorithm

• αt(i) = p(x1:t, Zt = i) is the forward probability of observing x1:t

and having state i at time t;

• βt+1(j) = p(x(t+2):n|Zt+1 = j) is the backward probability of
observing x(t+2):n given state j at time t.

• Note: αt(i) is a joint probability, and βt+1(j) is a conditional
probability.

• How to calculate αt(i) and βt+1(j)? We do this recursively
starting from the two end points t = 1 and t = n.
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Forward Probability

• For the first time point t = 1:

α1(i) = p(x1, Z1 = i) = w(i)B(i, x1),

• For each t, we can then calculate the next time point αt+1(i)

using the information of αt(i):

αt+1(i) = p(x1, . . . , xt+1, Zt+1 = i)

=
∑
j

p(x1, . . . , xt+1, Zt = j, Zt+1 = i)

(exhaust all states of Zt in the previous t)

=
∑
j

p(x1:t, Zt = j)p(Zt+1 = i|Zt = j)p(xt+1|Zt+1 = i)

=
∑
j

αt(j)A(j, i)B(i, xt+1)
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Backward Probability

• For the last time point t = n, βn(i) = p(xn+1|Zn = i), but we
don’t have xn+1 (no information). Hence, to not inject any
artificial information, we should let

βn(i) = 1

meaning that we must observe xn+1 anyway at the last step.
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Backward Probability

• Then we recursively calculate βt−1(i) in the previous state:

βt−1(i) = p(xt, . . . , xn|Zt−1 = i)

=
∑
j

p(xt, . . . , xn, Zt = j|Zt−1 = i)

(exhaust all states of Zt in the next t)

=
∑
j

p(Zt = j|Zt−1 = i)p(xt|Zt = j)p(xt+1:n|Zt = j)

=
∑
j

A(i, j)B(j, xt)βt(j)
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Forward-Backward Algorithm

• Finally, the conditional probability γt(i, j) needs to be normalized
by the marginal probability to be a proper distribution:

γt(i, j) =
αt(i)A(i, j)B(j, xt+1)βt+1(j)∑

i

∑
j αt(i)A(i, j)B(j, xt+1)βt+1(j)

• Note that this is a joint probability, so we divide by the sum of all
cases.

• This concludes the calculation of γt(i, j).
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Forward-Backward Algorithm

• Similarly, we can calculate γt(i) using Bayes’ Theorem

γt(i) = p(Zt = i|x)
∝ p(Zt = i,x)

= p(Zt = i,x1:t)p(xt+1:n|Zt = i,x1:t)

= p(Zt = i,x1:t)p(xt+1:n|Zt = i)

= αt(i)βt(i)

• Hence, after normalization, this is a proper distribution

γt(i) =
αt(i)βt(i)∑
i αt(i)βt(i)

• This concludes all the components needed in the EM algorithm.
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Inference on the Hidden States Z

• There are several ways to find the “optimal” hidden state
sequence Z given an observation sequence x, depending on the
definition of “optimality”.

• One criterion is to choose the hidden states Zt’s that are
individually most likely at the time point t, that is

Ẑ∗
t = argmax

i
p(Zt = i|x, θ̂ ) = argmax

i
γt(i).

• Here we can plug in θ̂ from the aforementioned EM algorithm
and simply get the argmax.
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Inference on the Hidden States Z

• Such a solution is optimal in the sense that it maximizes the
expected number of correct states (by choosing the most likely
state for each t).

• However, the resulting sequence may not be the most likely one
and it may not even be a valid sequence. For example, if Z has
three states (instead of 2), and the transition probability
A(1, 3) = 0 (impossible to transit from 1 to 3), but it is still
possible to have

Ẑ∗
t = 1 and Ẑ∗

t+1 = 3
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Inference on the Hidden States Z

• An alternative approach is to find the most likely single
sequence, i.e.,

Ẑ∗ = argmax
z1:n

p(Z = z|x, θ̂).

• Note that maximizing this is the same as maximizing

p(Z = z,x|θ̂) w.r.t z1:n

• Solving this with brute force will cost 2n number of tries, which is
almost impossible. Hence, we need some sophisticated
algorithm. A dynamic programming method called Viterbi
algorithm was proposed for this.

• An example of dynamic programming: Fibonacci series
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Inference on the Hidden States Z

• Define a maximizing sequence z1:t up to time t, which ends with
zt = i. The associated probability is

µt(i) = max
z1:(t−1)

p(Z1:(t−1) = z1:(t−1), Zt = i,x1:t|θ̂ )

which is the highest probability along a single path from 1 to t

that ends up at state Zt = i, given the observed sequence and
the parameter estimation.
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Inference on the Hidden States Z

• Realizing that (with θ̂ omitted)

µt+1(i)

= max
z1:t

p(z1:t, Zt+1 = i,x1:(t+1)|θ̂ )

= max
z1:t

{
p(z1:(t−1), Zt = zt,x1:t|θ̂ )p(zt+1|zt, θ̂ )p(xt+1|zt+1, θ̂ )

}
=

{
max

j
µt(j)A(j, i)

}
B(i, xt+1)

• By induction, we can solve the entire sequence.
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