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Outline

• Gaussian Mixture Models

• The EM Algorithm

• The MM Algorithm

• Ascend Property of EM
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Gaussian Mixture Models



Gaussian Mixture

• Suppose
— We know that there are two populations, with means µ1 and µ2,

respectively, and variance σ2 = 1.

— X is the observed outcome (from one of the two populations), and
Z ∈ {0, 1} is a hidden variable (not observable) that indicates the
population label, with P (Z = 1) = π.

— From only the observed data {xi}ni=1, we want to estimate the two
population means and the mixing probability: θ = (µ1, µ2, π).
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Gaussian Mixture

• The density of X is a mixture of two Gaussian:

pX(x) = (1− π)ϕµ1(x) + πϕµ2(x)

where ϕµ is the density function of N (µ, 1).

• The log-likelihood function based on n observed training data is

ℓ(x|θ) =
n∑

i=1

log
[
(1− π)ϕµ1(xi) + πϕµ2(xi)

]
• Of course, we can solve this by gradient descent, however, that

is often slow.

• Instead, we can treat the hidden labels Z as a “missing
variables” and use the EM algorithm.
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Gaussian Mixture: The EM algorithm

• Instead of directly optimizing ℓ(x|θ), we introduce the latent
variable Z, and write the joint log-likelihood as

ℓ(x, z|θ) =
n∑

i=1

[
(1− zi) log ϕµ1

(xi) + zi log ϕµ2
(xi)

]
+

n∑
i=1

[
(1− zi) log(1− π) + zi log π

]
• EM algorithm: We will then optimize this likelihood function by

iteratively updating the unknowns: z and θ.

— At the E-step (expectation), we treat both x and (µ1, µ2, π) as
known, and calculate the conditional probability of each zi.

— At the M-step (maximization), we treat x and z as known, and
solve the parameters by maximizing the likelihood.
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Gaussian Mixture: E-step

• E-step, if both x and θ = (µ1, µ2, π) are known, then the
conditional probability of each zi can be calculated as:

P(Zi = 1|θ(k),x) =
p(Zi = 1, xi|θ(k))

p(xi|θ(k))

=
p(Zi = 1, xi|θ(k))

p(Zi = 1, xi|θ(k)) + p(Zi = 0, xi|θ(k))

• This is pretty simple since we just need to calculate the densities
functions of each xi under the current parameter θ(k) for each
possible label (zi = 0 or 1).

6/23



Gaussian Mixture: E-step

• Lets first set up the initial values and estimate the conditional
probabilities for each zi

1 > # generate the data :
2 > n = 1000; x1 = rnorm ( n , mean=−2)
3 > x2 = rnorm ( n , mean=2) ; z = ( r u n i f ( n ) <= 0.25)
4 > x = i f e l s e ( z , x2 , x1 )
5 >

6 > # l e t s setup some ( a r b i t r a r y ) i n i t i a l values :
7 > hat PI = 0.5
8 > hat mu1 = −0.25
9 > hat mu2 = 0.25

10 >

11 > # E step
12 > # c a l c u l a t e the c o n d i t i o n a l d i s t r i b u t i o n o f the hidden v a r i a b l e z
13 > d1 = hat PI * dnorm ( x , mean= hat mu1)
14 > d2 = (1− hat PI ) * dnorm ( x , mean= hat mu2)
15 > ez = d2 / ( d1 + d2 )
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Gaussian Mixture: M-step

• Now we already have p(Z = z|x,θ(k)), we can replace all the zi
values (since they are unknown anyways) in the likelihood
function ℓ(x, z|θ) by their expectations (from the E-step).

p̂i = p(Zi = 1|x,θ(k))

• After this, things remained in the likelihood only involves x and θ,
so we can solve (the M-step) for the “MLE” of θ based on this
new likelihood function.

• It turns out that these estimators are just weighted means:

µ̂1 =

∑n
i=1(1− p̂i)xi∑n
i=1(1− p̂i)

, µ̂2 =

∑n
i=1 p̂ixi∑n
i=1 p̂i

and π̂ =

n∑
i=1

p̂i/n

• We will then iterate the E- and M- steps until convergence.
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The EM algorithm: M-step

1 > # M−step
2 > # based on the c o n d i t i o n a l d i s t r i b u t i o n , c a l c u l a t e the new MLE of the

parameters
3 > PI = mean( ez )
4 > hat mu1 = sum( (1−ez ) * x ) / sum(1−ez )
5 > hat mu2 = sum( ez * x ) / sum( ez )
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The EM algorithm: Gaussian Mixture

• The algorithm converges pretty fast after a few iterations:
(µ̂1, µ̂2, π̂)

1 [ 1 ] −1.7424035 0.1277127 0.3877030
2 [ 1 ] −2.2467959 0.9673550 0.3825091
3 [ 1 ] −2.2117884 1.3957797 0.3310913
4 [ 1 ] −2.1518538 1.6386121 0.2993035
5 [ 1 ] −2.1167579 1.7706276 0.2828132
6 [ 1 ] −2.0986018 1.8367258 0.2747542
7 [ 1 ] −2.0897518 1.8682925 0.2709414
8 [ 1 ] −2.0855753 1.8830238 0.2691684
9 [ 1 ] −2.0836364 1.8898248 0.2683511

10 [ 1 ] −2.0827434 1.8929490 0.2679758
11 [ 1 ] −2.0823335 1.8943810 0.2678039
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Connection with the K-mean

• Suppose in the E-step, we do not use the “soft” label (the
probability), instead, we use a “hard” label:

1{p(Zi = 1|x,θ(k)) > 0.5}

• This is essentially comparing the two densities and see which
one is larger. Notice that the log density of Gaussian is just the
Euclidean norm, we are just choosing the “closer” cluster mean
(of the previous iteration).

• The M-step is just re-calculating the cluster means based on the
new assignments.
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The EM algorithm for general
purpose



The EM algorithm

• Suppose that we want to maximize the a log-likelihood

logp(x|θ)

• Under some scenarios this likelihood can be difficult to derive:
• X are generated from a mixture of several models, however, we do

not know which is the underlying true model for each observation
(GMM belongs to this case).

• X contains missing values, where we have X = (Xobs,Xmis).

• However, it would be easier if we introduce a latent variable Z,
such that the joint likelihood of p(x, z|θ) is much easier to derive.
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The EM algorithm

• For example, if Z represents the hidden label, then

p(x, z|θ) = p(z|θ)p(x|z,θ)

where both probabilities are easier to write out given the
underlying model.

• In general, for a discrete case of Z, we need to maximize the
log-likelihood

logp(x|θ) = log
∑
z

p(x, z|θ)

• For a continuous case, we maximize the log-likelihood

logp(x|θ) = log

∫
z

p(x, z|θ)dz
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The EM algorithm

• This can still be difficult to solve since there is a summation in the
log function.

• The EM (Expectation–Maximization) algorithm is designed to
solve this problem (Dempster, Laird, and Rubin, 1977)

• An EM algorithem consists of two steps:
• E-step: Under the current value of θ, denoted as θ(k), find
p(z|x,θ(k)), the distribution of the unobserved variables given the
data and θ(k). Then calculate the conditional expectation:

g(θ) = EZ|x,θ(k) logp(x,Z|θ)

=


∑

z p(Z = z|x,θ(k)) logp(x, z|θ) (discrete)∫
z
p(Z = z|x,θ(k)) logp(x, z|θ)dz (continuous).

• M-step: Re-estimate the parameter θ to maximize g(θ):

θ(k+1) = argmax
θ

g(θ)
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The EM algorithm

• Three components are involved in an EM algorithm:
• The outcome variable X, with observed value x

• The distribution parameters θ

• The latent variables Z

• The EM algorithm bounces back and forth between two
processes:

• E-step Given the current parameters and the observed data,
estimate the (conditional mean of) latent variables

• M-step Given the observed data and the latent variables, estimate
the parameters

• We will see more examples using the Hidden Markov Models
(HMM)
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The MM algorithm



The MM algorithm

• The Majorize-Maximization (or Majorize-Minimization) algorithm
is a general framework for optimization.

• The EM algorithm can be treated as a special case of MM.

• We will show that both MM and EM has the ascend (or descend)
property.

16/23



General Philosophy

• The MM algorithm is relatively simpler than EM

• Suppose we want to maximize the function f(θ). We perform the
optimization by recursively updating the θ value

• At each iteration k, let θ(k) represent the currently parameter value,
we first find a function g(θ|θ(k)) that “majorize f(θ)”:

for all θ, g(θ|θ(k)) ≤ f(θ)

and g(θ(k)|θ(k)) = f(θ(k))

• Update θ with

θ(k+1) = argmax
θ

g(θ|θ(k))
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General Philosophy

from Wiki.
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Ascend Property

• The MM algorithm is guaranteed to ascend:

f(θ(k+1)) = g(θ(k+1)|θ(k))

+
[
f(θ(k+1))− g(θ(k+1)|θ(k))

]
≥ g(θ(k+1)|θ(k))
≥ g(θ(k)|θ(k))
= f(θ(k))

• If we use −f(θ(k+1)), then its guaranteed to descend.
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Ascend Property: EM

• The EM algorithm is a special case of MM

• We can show that

ℓ(θ(k+1)|x) = logp(x|θ(k+1)) ≥ logp(x|θ(k)) = ℓ(θ(k)|x)

• The proof relies on Jensen’s inequality:

E[f(X)] ≥ f(E[X]) if f is convex

or E[f(X)] ≤ f(E[X]) if f is concave
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Ascend Property: EM

• Since x is observed and z is the missing part

ℓ(θ|x) = logp(x|θ) = log
p(x, z|θ)
p(z|x, θ)

• The difference of two likelihood functions under θ(k) and θ(k+1)

ℓ(θ(k+1)|x)− ℓ(θ(k)|x) = logp(x, z|θ(k+1))− logp(x, z|θ(k))
−
{
logp(z|x, θ(k+1))− logp(z|x, θ(k))

}

21/23



Ascend Property: EM

• We take the expectation of z, conditioning on x and θ(k)

• For the LHS, since θ(k+1) = argmaxθ g(θ|x, θ(k)), the updated
likelihood ℓ(θ(k+1)|x) can only depend on x and θ(k+1). Hence,
taking the conditional expectation does not change the LHS.

• For the RHS, we have

E
[
logp(x, z|θ(k+1))− logp(x, z|θ(k))

∣∣∣x, θ(k)]
− E

[
logp(z|x, θ(k+1))− logp(z|x, θ(k))

∣∣∣x, θ(k)]
• The first term is the difference g(θ(k+1)|x, θ(k))− g(θ(k)|x, θ(k)),

from the E step in the EM algorithm. Hence this is non-negative.

22/23



Ascend Property: EM

• The second term is

E
[
log

{p(z|x, θ(k+1))

p(z|x, θ(k))

}∣∣∣x, θ(k)]
• Since log is a concave function, we have

E
[
log

{p(z|x, θ(k+1))

p(z|x, θ(k))

}∣∣∣x, θ(k)] ≤ logE
[
p(z|x, θ(k+1))

p(z|x, θ(k))

∣∣∣x, θ(k)]
= log

∫
p(z|x, θ(k+1))

p(z|x, θ(k))
p(z|x, θ(k))dz

= log(1) = 0

• Hence, overall, we have the ascend property

ℓ(θ(k+1)|x)− ℓ(θ(k)|x) ≥ 0
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