
STAT 542: Statistical Learning

Clustering

Ruoqing Zhu, Ph.D. <rqzhu@illinois.edu>

Course Website: https://teazrq.github.io/stat542/

April 17, 2022

Department of Statistics
University of Illinois at Urbana-Champaign

1/56

mailto:rqzhu@illinois.edu
https://teazrq.github.io/stat542/

Unsupervised Learning

Unsupervised Learning

• No response variable Y , only {xi}ni=1.

• Goal: learn patterns in X.

• Examples
• Estimate the density, covariance, graph (network), etc. of X —

could be difficult in high-dimensional settings

• Cluster analysis: identify multiple regions of the feature space that
contains modes of density.

• Dimension reduction: identify low-dimensional manifold within the
feature space X that represents high data density.

• Oftentimes, there is no clear measure of success.

2/56

Cluster Analysis

Cluster Analysis

• Group the dataset into subsets so that those within each subset
are more closely related (similar) to each other than those
objects assigned to other subsets. Each subset is called a cluster

• Flat clustering vs. hierarchical clustering: flat clustering divides
the dataset into k cluster, and hierarchical clustering arranges
the clusters into a natural hierarchy.

• Clustering results are crucially dependent on the measure of
similarity (or distance) between the “points” to be clustered.

3/56

Distance Metric

• A distance metric or a distance function is a function that defines
the similarity of two elements (points, sets, etc.)

• For the distance of two points (with continuous entries), the most
commonly used measurement is the Euclidian distance:

d(u, v) = ∥u− v∥2

=
√∑p

j=1(uj − vj)
2

• For categorical entries, the Hamming distance is usually used

d(u, v) =
∑p

j=1 1{uj ̸= vj}

• Distance measures should be defined based on the application.
There is no universally best approach.

4/56

Clustering

• Suppose we have a set of n data points

• We want to form K ≪ n clusters, indexed by k ∈ {1, . . . ,K}.

• Let C(·) be a cluster index function that assign th ith observation
or cluster C(i).

• Consider: search for a function C : {1, . . . , n} → {1, . . . ,K} to
minimize the within cluster distance:

W (C) =
1

2

K∑
k=1

∑
C(i),C(i′)=k

d(xi, xi′).

5/56

Clustering

• This is equivalent to maximizing the between cluster distance

B(C) =
1

2

K∑
k=1

∑
C(i)=k

∑
C(i′) ̸=k

dii′

• Note that the total distance can be broke down into

T =
1

2

n∑
i=1

n∑
i′=1

dii′ =
1

2

K∑
k=1

∑
C(i)=k

[∑
C(i′)=k

dii′ +
∑

C(i′)̸=k

dii′

]
= W (C) +B(C)

• The total distance is fixed for a given set of data, hence

minimize W (C) ⇐⇒ maximize B(C)

6/56

Clustering

• Given a specific distance measure d(·, ·), several algorithms can
be used to find the clusters

– Combinatorial algorithm

– K-means clustering

– Hierarchical clustering

7/56

Combinatorial Algorithm

Combinatorial Algorithms

• For small n and K, we could minimize W by brute-force search.

• However, the number of “tries” needed to complete the search is

S(n,K) =
1

K!

K∑
k=1

(−1)K−k

(
K

k

)
kn

• For example S(10, 4) = 34, 105; S(19, 4) ≈ 1010.

• This is not feasible for large n and K, since the number of
distinct assignments can be extremely large.

• It calls for more efficient algorithms: may not be optimal but a
reasonably good suboptimal partition.

8/56

K-means Clustering

K-means Clustering

• Consider an enlarged optimization problem:

min
C,{mk}K

k=1

K∑
k=1

∑
C(i)=k

∥xi −mk∥2

• Hence, we are solving both
• the cluster index function C(·),

• and also the cluster centers mk, k = 1 . . .K.

• This problem is NP-hard for ≥ 2 dimensions.

9/56

K-means Clustering

• Combinatorial algorithm is too expansive.

• Instead, consider an algorithm that alternatively updates the two
components:

• C, the cluster assignments

• {mk}Kk=1: the cluster means

• We will do an iterative update by:
1) Fixing C, find the best {mk}Kk=1

2) Fixing {mk}Kk=1, find the best C

10/56

K-means Clustering

• Fixing C, we know the cluster label of each subject. For any set
{i : C(i) = k}, finding the mean is

mk = argmin
m

∑
C(i)=k

∥xi −m∥2.

• This is simply finding the mean within cluster k, i.e.

mk =

∑
C(i)=k xi∑

i 1{C(i) = k}

11/56

K-means Clustering

• Fixing the cluster means {mk}Kk=1, to find the new cluster
assignments, we simply recalculate the distance from an
observation to each of the cluster mean.

C(i) = argmin
k∈{1,...,K}

d(xi,mk)

• Hence each point will be assigned to the closest cluster mean

12/56

K-means Clustering

• A K-means Clustering algorithm:
1) Randomly split the dataset into K different subsets. Assign each

subsets a cluster label. Then iterate between 2) and 3).

2) Given the cluster assignment C, calculate the cluster mean vectors
m1, . . . ,mK .

3) Given the current set of means {m1, . . . ,mK}, assign each
observation to the closest current cluster mean.

• Stop the algorithm when C does not change

13/56

Demonstration

14/56

Demonstration

15/56

Demonstration

16/56

Demonstration

17/56

Demonstration

18/56

K-means Clustering

• Note: We usually initiate the cluster labels randomly. However,
this algorithm does not guarantee to global minimum. Example?

• The algorithm still has a descent property, which leads to a local
minimizer.

19/56

Alternative Version

• K-medoids is an alternative version of K-means:

• Replace the second step by searching for the one observation
that minimizes the distance to all others in the cluster

i∗k = argmin
i:C(i)=k

∑
C(i′)=k

D(xi, xi′)

• Use xi∗k
as the “center” of cluster k.

20/56

Applications

• See the supplementary R file

• Example 1: the iris data

• Example 2: cluster pixels in a picture

21/56

Remarks

• Clustering may help in supervised learning

• How to choose the number of clusters K

• Other distance measures

• Categorical variables

22/56

Hierarchical Clustering

Hierarchical Clustering

• Choosing the number of clusters K can be difficult

• A hierarchical representation which
• at the lowest level, each cluster contains a single observation.

• at the highest level there is only one cluster containing all
observations.

• Use dendrogram to display the clustering result.

23/56

Hierarchical Clustering

• Suppose we have a set of 6 observations

1

2

3

4

5

6

24/56

Dendrogram

• A typical dendrogram from hierarchical clustering

• How to construct this?

5

3 6

1

2 4

0.
0

0.
5

1.
0

1.
5

2.
0

2.
5

Cluster Dendrogram

25/56

Demonstration

1

2

3

4

5

6

26/56

Demonstration

1

2

3

4

5

6

27/56

Demonstration

1

2

3

4

5

6

28/56

Demonstration

1

2

3

4

5

6

29/56

Demonstration

1

2

3

4

5

6

30/56

Algorithm (agglomerative)

• An agglomerative algorithm is a “bottom up” approach:
• Begin with every observation representing a singleton cluster.

• At each step, merge two “closest” clusters into one cluster and
reduce the number of clusters by one.

• Stop when all observations are in the same cluster

• How to choose which two clusters to merge?

• This requires:
• A distance measure between any two observations d(xi, xj′)

• A distance measure between any two sets of observations d(G,H)

31/56

Distance Measures

• Distance d(G,H) between two clusters G and H can be defined
in different ways:

• Complete linkage (default of hclust()): the furthest pair

d(G,H) = max
i∈G,i′∈H

dii′

• Single linkage: the closest pair

d(G,H) = min
i∈G,i′∈H

dii′

• Average linkage: average dissimilarity

d(G,H) =
1

nGnH

∑
i∈G

∑
i′∈H

dii′

• Different choice may results in different hierarchical structures

32/56

Distance Matrix

• To perform a hierarchical clustering, a matrix of all the pair-wise
distances is sufficient

• We don’t have to know the values of the original observations

• This is an n× n matrix: the (i, i′)’s element represents the
distance between xi and xi′

• This matrix is also called a dissimilarity matrix.
• Symmetric

• diagonal elements are zero

33/56

Applications

• See the supplementary R file

• Example 1: the iris data

• Example 2: RNA expression data

34/56

Principle Component Analysis

Principle Component Analysis

• Principle Component Analysis (PCA) is an old but very useful
technique invented by Karl Pearson in 1901

• The main purpose is data visualization (mostly in 2d)

• It also serves as a dimension reduction method

• Unsupervised method, can be used for preprocessing the data.

35/56

Principle Component Analysis

• Given that we have a n× p design matrix X, there are many
equivalent approaches (motivations):

• Explain the most variation: Produce a derived set of uncorrelated
variables Zk = Xαk, k = 1, . . . , q < p that are linear combinations
of the original variables, and explain most of the variation in the
original set

• Approximate the design matrix: Approximate the design matrix X

by the best (using Frobenius norm) rank-q matrix, which can be
performed through SVD

36/56

Principle Component Analysis

• Suppose we have an n× p design matrix X

• The first step is to center each variable, i.e., subtract the column
means from each column respectively.

• In the following, we assume that X is already centered.

• Centering X does nothing but re-positioning the axis

37/56

Singular Value Decomposition

• One way to understand the PCA is using a singular value
decomposition (SVD)

Xn×p = Un×nDn×pV
T
p×p,

where both U and V are orthogonal matrices, i.e.
UTU = UUT = I, and same for V; and Dn×p is a diagonal
matrix.

• The diagonal elements of Dn×p are of a decreasing order.

38/56

Low Rank Approximation

• If we have to choose a rank-1 matrix A to approximate Xn×p,
what would we do?

• Turns out that the best choice is

U1d11V
T
1 ,

where U1 is the first column of U, V1 is the first column of V,
and d11 is the first diagonal element of D

• In other words, ∥X−U1d11V
T
1∥22 is minimized with this choice.

• Hence, U1d11V
T
1 is a rank-1 matrix that explained the variations

in X as much as possible.

39/56

Principle Component Analysis

• Let’s consider the sample covariance matrix Σ̂ = XTX/(n− 1),
since X is already centered.

• Σ̂ can be diagonalize into

Σ̂ = VD∗VT,

where columns of V are principle directions (loadings) and
projecting X on these loadings gives the principal components

• On the other hand, based on SVD,

X = UDVT,

we can rewrite Σ̂ as

Σ̂ = VDTUTUDVT/(n− 1) = V
D2

n− 1
VT

40/56

Principle Component Analysis

• So the right singular vectors V of X are just the principle
directions, and the principal components are basically projecting
each row (observation) of X onto those directions:

XV = UDVTV = UD

• The first column of U is the first PC, and d11 is the variation along
that direction, which is also the squared eigenvalue from SVD.

• PCA should be performed by centering X first (column-wise, i.e.,
by each variable).

41/56

Demonstration

−3 −2 −1 0 1 2 3

−
3

−
2

−
1

0
1

2
3

42/56

Demonstration

−3 −2 −1 0 1 2 3

−
3

−
2

−
1

0
1

2
3

43/56

Principle Component Analysis

• PCA is a dimension reduction tool, often used for visualization

• The leading PCs may display interesting information of the
underlying (unobserved) clusters/manifold

• PCA is unsupervised, i.e., the directions does not necessarily
reflect the relationship with the response (if there is any)

44/56

Self-organizing Maps

Overview

• Self-organizing Map (SOM) is another popular clustering method

• The main difference between SOM and k-means is that cluster
means of a SOM has geometric relationship

• We will introduce the algorithm

• Please see R examples from course website

45/56

SOM Algorithm

• Input data: {xi}ni=1.

• Initialize cluster means (randomly): wij , i = 1, . . . p, j = 1, . . . q.
are a grid of centers (the connected black dots). They are similar
to the centers in a k-mean algorithm. However, they also
preserves some geometric relationship.

• Learning rate: α ∈ [0, 1]. This controls how fast the wij ’s are
updated. It will decrease progressively.

• Radius: r that controls how many wij ’s will be updated at each
iteration. It will also decrease progressively.

46/56

SOM Algorithm

• For k = 1, . . . , n, we will steam-in one new observation xk and
perform the following update:

• For all wij , calculate the distance between each wij and xk. Let
dij = ∥xk − wij∥. By default, we use Euclidean distance.

• Select the closest wij , denoted as w∗

• Update each wij based on the fomular
wij = wij + αh(w∗, wij , r) ∥xk − wij∥

• Decrease the value of α and r

• In the ‘kohonen‘ package, α starts at 0.05, and linearly
decreases to 0.01, while r is chosen to be 2/3 of all cluster
means at the first iteration.

47/56

Spectral Clustering

Similarity Graph

• In some applications, we do not have the value of each data
point, instead, we have the similarities between data points.

• Note: for similarity measures, larger means more similar, while
for distance measures, larger is further away.

• A nice way to represent the data is the Similarity Graph
G = (V,E) — an undirected graph

• V is a set of vertices: {x1, x2, . . . , xn}

• E is the set of edges: {(i, j)}ij

48/56

Similarity Graph

• For our case, this graph is weighted by an adjacency matrix

Wn×n = {wij}ij

• You can define W in many different ways

• Each wij is the similarity between vertices i and j

• W is symmetric: wij = wji

• We also define the degree matrix D as a diagonal matrix

diag(d1, . . . , dn)

where the di is the degree of vertex i:

di =

n∑
j=1

wij

49/56

Graph Laplacian

• There are many different ways to define a graph Laplacian
matrix. We give a few examples.

• Unnormalized graph Laplacian

L = D−W

• Normalized graph Laplacians

Lsym = D−1/2LD−1/2 = I−D−1/2WD−1/2

Lrw = D−1L = I−D−1W

• Each of them have some unique properties.

50/56

Unnormalized graph Laplacian

• For the Unnormalized graph Laplacian, we have, for any f

f ′Lf = f ′Df − f ′Wf =

n∑
i=1

dif
2
i −

∑
i,j

fifjwij

=
1

2

∑
i

dif
2
i − 2

∑
i,j

fifjwij +
∑
j

djf
2
j

=

1

2

∑
ij

wij(fi − fj)
2

• We also have:
• L is positive semi-definite

• the smallest eigen-value is 0, with eigen-vector 1

• The number of 0 eigen-values depends on the number of
connected components

51/56

Normalized graph Laplacian

• For the normaized graph Laplacian, we have,

f ′Lsymf =
1

2

∑
ij

wij

(
fi√
di

− fj√
di

)2

• The eigenvalue λ and eigenvector v of Lrw can be solved from

Lv = λDv

• The smallest eigenvalue of both Lsym and Lrw are 0, with
eigen-vectors 1 and D1/21, respectively.

52/56

Algorithm

• The spectral clustering is very simple:
• Construct a weighted adjacency matrix W, using e.g.,

wij = exp(−∥xi − xj∥2

2σ2
)

• Compute the Laplacian L (or normalized versions Lsym, Lrw)

• Compute the smallest k eigenvectors, denote them collectively as
Vn×k

• Treat Vn×k as the matrix of the observed data, and perform
k-means clustering

• Output the k cluster labels

53/56

Demonstration

Example from Von Luxburg, Ulrike. ”A tutorial on spectral clustering.” Statistics and computing 17, no. 4 (2007): 395-416.

54/56

Principal Coordinates Analysis

General Concept

• Principal Coordinates Analysis (PCoA) is also called the classical
multidimensional scaling (MDS)

• Given a similarity matrix Sn×n = {sij}ij , we want to construct
low-dimensional (k) coordinates z1, z2, . . . , zn ∈ Rk such that the
inner product of two subjects mimics the corresponding similarity

• More specifically, we minimize the strain function:

Strain =
∑
ij

(sij − ⟨zi, zj⟩)2

by solving low-dimensional coordinates z1, . . . , zn.

55/56

Algorithm

• PCoA can also be solved using eigen decomposition:
• We first obtain the similarity matrix S

• Let the double centered matrix B = − 1
2
HDH, with H = I− 1

n
11T

• Perform SVD on B and obtain the largest k eigenvector Un×k and
the eigenvalues on the diagonal of Dk×k

• The principle coordinate matrix is UD1/2

• If the similarity matrix S is in fact the centered inner product of
the original data X, then PCoA is the same as PCA.

56/56

	Unsupervised Learning
	Cluster Analysis
	Combinatorial Algorithm
	K-means Clustering
	Hierarchical Clustering
	Principle Component Analysis
	Self-organizing Maps
	Spectral Clustering
	Principal Coordinates Analysis

