STAT 542: Statistical Learning

Clustering

Ruoqing Zhu, Ph.D. rqzhu@illinois.edu
Course Website: https://teazrq.github.io/stat542/
April 17, 2022
Department of Statistics
University of Illinois at Urbana-Champaign

Unsupervised Learning

Unsupervised Learning

- No response variable Y, only $\left\{x_{i}\right\}_{i=1}^{n}$.
- Goal: learn patterns in X.
- Examples
- Estimate the density, covariance, graph (network), etc. of X could be difficult in high-dimensional settings
- Cluster analysis: identify multiple regions of the feature space that contains modes of density.
- Dimension reduction: identify low-dimensional manifold within the feature space \mathcal{X} that represents high data density.
- Oftentimes, there is no clear measure of success.

Cluster Analysis

Cluster Analysis

- Group the dataset into subsets so that those within each subset are more closely related (similar) to each other than those objects assigned to other subsets. Each subset is called a cluster
- Flat clustering vs. hierarchical clustering: flat clustering divides the dataset into k cluster, and hierarchical clustering arranges the clusters into a natural hierarchy.
- Clustering results are crucially dependent on the measure of similarity (or distance) between the "points" to be clustered.

Distance Metric

- A distance metric or a distance function is a function that defines the similarity of two elements (points, sets, etc.)
- For the distance of two points (with continuous entries), the most commonly used measurement is the Euclidian distance:

$$
\begin{aligned}
d(u, v) & =\|u-v\|_{2} \\
& =\sqrt{\sum_{j=1}^{p}\left(u_{j}-v_{j}\right)^{2}}
\end{aligned}
$$

- For categorical entries, the Hamming distance is usually used

$$
d(u, v)=\sum_{j=1}^{p} \mathbf{1}\left\{u_{j} \neq v_{j}\right\}
$$

- Distance measures should be defined based on the application. There is no universally best approach.

Clustering

- Suppose we have a set of n data points
- We want to form $K \ll n$ clusters, indexed by $k \in\{1, \ldots, K\}$.
- Let $C(\cdot)$ be a cluster index function that assign th i th observation or cluster $C(i)$.
- Consider: search for a function $C:\{1, \ldots, n\} \rightarrow\{1, \ldots, K\}$ to minimize the within cluster distance:

$$
W(C)=\frac{1}{2} \sum_{k=1}^{K} \sum_{C(i), C\left(i^{\prime}\right)=k} d\left(x_{i}, x_{i^{\prime}}\right) .
$$

Clustering

- This is equivalent to maximizing the between cluster distance

$$
B(C)=\frac{1}{2} \sum_{k=1}^{K} \sum_{C(i)=k} \sum_{C\left(i^{\prime}\right) \neq k} d_{i i^{\prime}}
$$

- Note that the total distance can be broke down into

$$
\begin{aligned}
T=\frac{1}{2} \sum_{i=1}^{n} \sum_{i^{\prime}=1}^{n} d_{i i^{\prime}} & =\frac{1}{2} \sum_{k=1}^{K} \sum_{C(i)=k}\left[\sum_{C\left(i^{\prime}\right)=k} d_{i i^{\prime}}+\sum_{C\left(i^{\prime}\right) \neq k} d_{i i^{\prime}}\right] \\
& =W(C)+B(C)
\end{aligned}
$$

- The total distance is fixed for a given set of data, hence

$$
\text { minimize } W(C) \Longleftrightarrow \text { maximize } B(C)
$$

Clustering

- Given a specific distance measure $d(\cdot, \cdot)$, several algorithms can be used to find the clusters
- Combinatorial algorithm
- K-means clustering
- Hierarchical clustering

Combinatorial Algorithm

Combinatorial Algorithms

- For small n and K, we could minimize W by brute-force search.
- However, the number of "tries" needed to complete the search is

$$
S(n, K)=\frac{1}{K!} \sum_{k=1}^{K}(-1)^{K-k}\binom{K}{k} k^{n}
$$

- For example $S(10,4)=34,105 ; S(19,4) \approx 10^{10}$.
- This is not feasible for large n and K, since the number of distinct assignments can be extremely large.
- It calls for more efficient algorithms: may not be optimal but a reasonably good suboptimal partition.

K-means Clustering

K-means Clustering

- Consider an enlarged optimization problem:

$$
\min _{C,\left\{m_{k}\right\}_{k=1}^{K}} \sum_{k=1}^{K} \sum_{C(i)=k}\left\|x_{i}-m_{k}\right\|^{2}
$$

- Hence, we are solving both
- the cluster index function $C(\cdot)$,
- and also the cluster centers $m_{k}, k=1 \ldots K$.
- This problem is NP-hard for ≥ 2 dimensions.

K-means Clustering

- Combinatorial algorithm is too expansive.
- Instead, consider an algorithm that alternatively updates the two components:
- C, the cluster assignments
- $\left\{m_{k}\right\}_{k=1}^{K}$: the cluster means
- We will do an iterative update by:

1) Fixing C, find the best $\left\{m_{k}\right\}_{k=1}^{K}$
2) Fixing $\left\{m_{k}\right\}_{k=1}^{K}$, find the best C

K-means Clustering

- Fixing C, we know the cluster label of each subject. For any set $\{i: C(i)=k\}$, finding the mean is

$$
m_{k}=\underset{m}{\arg \min } \sum_{C(i)=k}\left\|x_{i}-m\right\|^{2}
$$

- This is simply finding the mean within cluster k, i.e.

$$
m_{k}=\frac{\sum_{C(i)=k} x_{i}}{\sum_{i} \mathbf{1}\{C(i)=k\}}
$$

K-means Clustering

- Fixing the cluster means $\left\{m_{k}\right\}_{k=1}^{K}$, to find the new cluster assignments, we simply recalculate the distance from an observation to each of the cluster mean.

$$
C(i)=\underset{k \in\{1, \ldots, K\}}{\arg \min } d\left(x_{i}, m_{k}\right)
$$

- Hence each point will be assigned to the closest cluster mean

K-means Clustering

- A K-means Clustering algorithm:

1) Randomly split the dataset into K different subsets. Assign each subsets a cluster label. Then iterate between 2) and 3).
2) Given the cluster assignment C, calculate the cluster mean vectors m_{1}, \ldots, m_{K}.
3) Given the current set of means $\left\{m_{1}, \ldots, m_{K}\right\}$, assign each observation to the closest current cluster mean.

- Stop the algorithm when C does not change

Demonstration

Demonstration

Demonstration

Demonstration

Demonstration

K-means Clustering

- Note: We usually initiate the cluster labels randomly. However, this algorithm does not guarantee to global minimum. Example?
- The algorithm still has a descent property, which leads to a local minimizer.

Alternative Version

- K-medoids is an alternative version of K-means:
- Replace the second step by searching for the one observation that minimizes the distance to all others in the cluster

$$
i_{k}^{*}=\underset{i: C(i)=k}{\arg \min } \sum_{C\left(i^{\prime}\right)=k} D\left(x_{i}, x_{i^{\prime}}\right)
$$

- Use $x_{i_{k}^{*}}$ as the "center" of cluster k.

Applications

- See the supplementary R file
- Example 1: the iris data
- Example 2: cluster pixels in a picture

Remarks

- Clustering may help in supervised learning
- How to choose the number of clusters K
- Other distance measures
- Categorical variables

Hierarchical Clustering

Hierarchical Clustering

- Choosing the number of clusters K can be difficult
- A hierarchical representation which
- at the lowest level, each cluster contains a single observation.
- at the highest level there is only one cluster containing all observations.
- Use dendrogram to display the clustering result.

Hierarchical Clustering

- Suppose we have a set of 6 observations

Dendrogram

- A typical dendrogram from hierarchical clustering
- How to construct this?

Demonstration

Demonstration

Demonstration

Demonstration

Demonstration

Algorithm (agglomerative)

- An agglomerative algorithm is a "bottom up" approach:
- Begin with every observation representing a singleton cluster.
- At each step, merge two "closest" clusters into one cluster and reduce the number of clusters by one.
- Stop when all observations are in the same cluster
- How to choose which two clusters to merge?
- This requires:
- A distance measure between any two observations $d\left(x_{i}, x_{j^{\prime}}\right)$
- A distance measure between any two sets of observations $d(G, H)$

Distance Measures

- Distance $d(G, H)$ between two clusters G and H can be defined in different ways:
- Complete linkage (default of hclust()): the furthest pair

$$
d(G, H)=\max _{i \in G, i^{\prime} \in H} d_{i i^{\prime}}
$$

- Single linkage: the closest pair

$$
d(G, H)=\min _{i \in G, i^{\prime} \in H} d_{i i^{\prime}}
$$

- Average linkage: average dissimilarity

$$
d(G, H)=\frac{1}{n_{G} n_{H}} \sum_{i \in G} \sum_{i^{\prime} \in H} d_{i i^{\prime}}
$$

- Different choice may results in different hierarchical structures

Distance Matrix

- To perform a hierarchical clustering, a matrix of all the pair-wise distances is sufficient
- We don't have to know the values of the original observations
- This is an $n \times n$ matrix: the (i, i^{\prime})'s element represents the distance between x_{i} and $x_{i^{\prime}}$
- This matrix is also called a dissimilarity matrix.
- Symmetric
- diagonal elements are zero

Applications

- See the supplementary R file
- Example 1: the iris data
- Example 2: RNA expression data

Principle Component Analysis

Principle Component Analysis

- Principle Component Analysis (PCA) is an old but very useful technique invented by Karl Pearson in 1901
- The main purpose is data visualization (mostly in 2 d)
- It also serves as a dimension reduction method
- Unsupervised method, can be used for preprocessing the data.

Principle Component Analysis

- Given that we have a $n \times p$ design matrix \mathbf{X}, there are many equivalent approaches (motivations):
- Explain the most variation: Produce a derived set of uncorrelated variables $\mathbf{Z}_{k}=\mathbf{X} \alpha_{k}, k=1, \ldots, q<p$ that are linear combinations of the original variables, and explain most of the variation in the original set
- Approximate the design matrix: Approximate the design matrix \mathbf{X} by the best (using Frobenius norm) rank- q matrix, which can be performed through SVD

Principle Component Analysis

- Suppose we have an $n \times p$ design matrix \mathbf{X}
- The first step is to center each variable, i.e., subtract the column means from each column respectively.
- In the following, we assume that \mathbf{X} is already centered.
- Centering \mathbf{X} does nothing but re-positioning the axis

Singular Value Decomposition

- One way to understand the PCA is using a singular value decomposition (SVD)

$$
\mathbf{X}_{n \times p}=\mathbf{U}_{n \times n} \mathbf{D}_{n \times p} \mathbf{V}_{p \times p}^{\top},
$$

where both U and V are orthogonal matrices, i.e. $\mathbf{U}^{\top} \mathbf{U}=\mathbf{U U}^{\top}=\mathbf{I}$, and same for \mathbf{V}; and $\mathbf{D}_{n \times p}$ is a diagonal matrix.

- The diagonal elements of $\mathbf{D}_{n \times p}$ are of a decreasing order.

Low Rank Approximation

- If we have to choose a rank-1 matrix \mathbf{A} to approximate $\mathbf{X}_{n \times p}$, what would we do?
- Turns out that the best choice is

$$
\mathbf{U}_{1} d_{11} \mathbf{V}_{1}^{\top}
$$

where \mathbf{U}_{1} is the first column of $\mathbf{U}, \mathbf{V}_{1}$ is the first column of \mathbf{V}, and d_{11} is the first diagonal element of \mathbf{D}

- In other words, $\left\|\mathbf{X}-\mathbf{U}_{1} d_{11} \mathbf{V}_{1}^{\top}\right\|_{2}^{2}$ is minimized with this choice.
- Hence, $\mathbf{U}_{1} d_{11} \mathbf{V}_{1}^{\top}$ is a rank-1 matrix that explained the variations in \mathbf{X} as much as possible.

Principle Component Analysis

- Let's consider the sample covariance matrix $\widehat{\Sigma}=\mathbf{X}^{\top} \mathbf{X} /(n-1)$, since \mathbf{X} is already centered.
- $\widehat{\Sigma}$ can be diagonalize into

$$
\widehat{\Sigma}=\mathbf{V D}^{*} \mathbf{V}^{\top}
$$

where columns of \mathbf{V} are principle directions (loadings) and projecting \mathbf{X} on these loadings gives the principal components

- On the other hand, based on SVD,

$$
\mathbf{X}=\mathbf{U D V}^{\top},
$$

we can rewrite $\widehat{\Sigma}$ as

$$
\widehat{\Sigma}=\mathbf{V D}^{\top} \mathbf{U}^{\top} \mathbf{U} \mathbf{D V}^{\top} /(n-1)=\mathbf{V} \frac{\mathbf{D}^{2}}{n-1} \mathbf{V}^{\top}
$$

Principle Component Analysis

- So the right singular vectors \mathbf{V} of \mathbf{X} are just the principle directions, and the principal components are basically projecting each row (observation) of \mathbf{X} onto those directions:

$$
\mathbf{X V}=\mathbf{U D V}^{\top} \mathbf{V}=\mathbf{U D}
$$

- The first column of \mathbf{U} is the first PC , and d_{11} is the variation along that direction, which is also the squared eigenvalue from SVD.
- PCA should be performed by centering \mathbf{X} first (column-wise, i.e., by each variable).

Demonstration

Demonstration

Principle Component Analysis

- PCA is a dimension reduction tool, often used for visualization
- The leading PCs may display interesting information of the underlying (unobserved) clusters/manifold
- PCA is unsupervised, i.e., the directions does not necessarily reflect the relationship with the response (if there is any)

Self-organizing Maps

Overview

- Self-organizing Map (SOM) is another popular clustering method
- The main difference between SOM and k-means is that cluster means of a SOM has geometric relationship
- We will introduce the algorithm
- Please see R examples from course website

SOM Algorithm

- Input data: $\left\{x_{i}\right\}_{i=1}^{n}$.
- Initialize cluster means (randomly): $w_{i j}, i=1, \ldots p, j=1, \ldots q$. are a grid of centers (the connected black dots). They are similar to the centers in a k-mean algorithm. However, they also preserves some geometric relationship.
- Learning rate: $\alpha \in[0,1]$. This controls how fast the $w_{i j}$'s are updated. It will decrease progressively.
- Radius: r that controls how many $w_{i j}$'s will be updated at each iteration. It will also decrease progressively.

SOM Algorithm

- For $k=1, \ldots, n$, we will steam-in one new observation x_{k} and perform the following update:
- For all $w_{i j}$, calculate the distance between each $w_{i j}$ and x_{k}. Let $d_{i j}=\left\|x_{k}-w_{i j}\right\|$. By default, we use Euclidean distance.
- Select the closest $w_{i j}$, denoted as w_{*}
- Update each $w_{i j}$ based on the fomular $w_{i j}=w_{i j}+\alpha h\left(w_{*}, w_{i j}, r\right)\left\|x_{k}-w_{i j}\right\|$
- Decrease the value of α and r
- In the 'kohonen' package, α starts at 0.05 , and linearly decreases to 0.01 , while r is chosen to be $2 / 3$ of all cluster means at the first iteration.

Spectral Clustering

Similarity Graph

- In some applications, we do not have the value of each data point, instead, we have the similarities between data points.
- Note: for similarity measures, larger means more similar, while for distance measures, larger is further away.
- A nice way to represent the data is the Similarity Graph $G=(V, E)$ - an undirected graph
- V is a set of vertices: $\left\{x_{1}, x_{2}, \ldots, x_{n}\right\}$
- E is the set of edges: $\{(i, j)\}_{i j}$

Similarity Graph

- For our case, this graph is weighted by an adjacency matrix

$$
\mathbf{W}_{n \times n}=\left\{w_{i j}\right\}_{i j}
$$

- You can define \mathbf{W} in many different ways
- Each $w_{i j}$ is the similarity between vertices i and j
- \mathbf{W} is symmetric: $w_{i j}=w_{j i}$
- We also define the degree matrix \mathbf{D} as a diagonal matrix

$$
\operatorname{diag}\left(d_{1}, \ldots, d_{n}\right)
$$

where the d_{i} is the degree of vertex i :

$$
d_{i}=\sum_{j=1}^{n} w_{i j}
$$

Graph Laplacian

- There are many different ways to define a graph Laplacian matrix. We give a few examples.
- Unnormalized graph Laplacian

$$
\mathrm{L}=\mathbf{D}-\mathbf{W}
$$

- Normalized graph Laplacians

$$
\begin{aligned}
\mathbf{L}_{\text {sym }} & =\mathbf{D}^{-1 / 2} \mathbf{L} \mathbf{D}^{-1 / 2}=\mathbf{I}-\mathbf{D}^{-1 / 2} \mathbf{W D}^{-1 / 2} \\
\mathbf{L}_{r w} & =\mathbf{D}^{-1} \mathbf{L}=\mathbf{I}-\mathbf{D}^{-1} \mathbf{W}
\end{aligned}
$$

- Each of them have some unique properties.

Unnormalized graph Laplacian

- For the Unnormalized graph Laplacian, we have, for any f

$$
\begin{aligned}
f^{\prime} \mathbf{L} f & =f^{\prime} \mathbf{D} f-f^{\prime} \mathbf{W} f=\sum_{i=1}^{n} d_{i} f_{i}^{2}-\sum_{i, j} f_{i} f_{j} w_{i j} \\
& =\frac{1}{2}\left\{\sum_{i} d_{i} f_{i}^{2}-2 \sum_{i, j} f_{i} f_{j} w_{i j}+\sum_{j} d_{j} f_{j}^{2}\right\} \\
& =\frac{1}{2} \sum_{i j} w_{i j}\left(f_{i}-f_{j}\right)^{2}
\end{aligned}
$$

- We also have:
- L is positive semi-definite
- the smallest eigen-value is 0 , with eigen-vector 1
- The number of 0 eigen-values depends on the number of connected components

Normalized graph Laplacian

- For the normaized graph Laplacian, we have,

$$
f^{\prime} \mathbf{L}_{\text {sym }} f=\frac{1}{2} \sum_{i j} w_{i j}\left(\frac{f_{i}}{\sqrt{d_{i}}}-\frac{f_{j}}{\sqrt{d_{i}}}\right)^{2}
$$

- The eigenvalue λ and eigenvector \mathbf{v} of \mathbf{L}_{rw} can be solved from

$$
\mathbf{L v}=\lambda \mathbf{D} \mathbf{v}
$$

- The smallest eigenvalue of both $\mathbf{L}_{\text {sym }}$ and $\mathbf{L}_{r w}$ are 0 , with eigen-vectors 1 and $\mathbf{D}^{1 / 2} 1$, respectively.

Algorithm

- The spectral clustering is very simple:
- Construct a weighted adjacency matrix \mathbf{W}, using e.g.,

$$
w_{i j}=\exp \left(-\frac{\left\|x_{i}-x_{j}\right\|^{2}}{2 \sigma^{2}}\right)
$$

- Compute the Laplacian \mathbf{L} (or normalized versions $\mathbf{L}_{\text {sym }}, \mathbf{L}_{r \mathrm{r}}$)
- Compute the smallest k eigenvectors, denote them collectively as $\mathbf{V}_{n \times k}$
- Treat $\mathbf{V}_{n \times k}$ as the matrix of the observed data, and perform k-means clustering
- Output the k cluster labels

Demonstration

Example from Von Luxburg, Ulrike. "A tutorial on spectral clustering." Statistics and computing 17, no. 4 (2007): 395-416.

Principal Coordinates Analysis

General Concept

- Principal Coordinates Analysis (PCoA) is also called the classical multidimensional scaling (MDS)
- Given a similarity matrix $\mathbf{S}_{n \times n}=\left\{s_{i j}\right\}_{i j}$, we want to construct low-dimensional (k) coordinates $z_{1}, z_{2}, \ldots, z_{n} \in \mathbb{R}^{k}$ such that the inner product of two subjects mimics the corresponding similarity
- More specifically, we minimize the strain function:

$$
\text { Strain }=\sum_{i j}\left(s_{i j}-\left\langle z_{i}, z_{j}\right\rangle\right)^{2}
$$

by solving low-dimensional coordinates z_{1}, \ldots, z_{n}.

Algorithm

- PCoA can also be solved using eigen decomposition:
- We first obtain the similarity matrix \mathbf{S}
- Let the double centered matrix $\mathbf{B}=-\frac{1}{2} \mathbf{H D H}$, with $\mathbf{H}=\mathbf{I}-\frac{1}{n} \mathbf{1 1}{ }^{\top}$
- Perform SVD on B and obtain the largest k eigenvector $\mathbf{U}_{n \times k}$ and the eigenvalues on the diagonal of $\mathbf{D}_{k \times k}$
- The principle coordinate matrix is UD $^{1 / 2}$
- If the similarity matrix \mathbf{S} is in fact the centered inner product of the original data \mathbf{X}, then PCoA is the same as PCA.

