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Classification Problems

• Training data Dn = {xi, yi}ni=1:
– xi ∈ Rp, and yi ∈ {0, 1} (sometimes we use {−1,+1}).

• The goal is to find a classifier

f : Rp −→ {0, 1}

• At any target point x with outcome y, the performance of a
classifier is usually measured by 0–1 loss

L(f(x), y) =

{
0 if y = f(x)

1 if o.w.
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Soft vs. Hard Classification

• There are two popular approaches when modeling binary data

• Soft classifiers
• Estimate the conditional probabilities P (Y |X)

• Use 1{P (Y |X) > c} for classification

• e.g. logistic regression

• Hard classifiers
• Directly estimate the classification decision boundary

• e.g. svm

• Many methods are capable of doing or have been extended to
perform both
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Logistic Regression



Motivation

• Directly model the probability

η(x) = P(Y = 1|X = x)

• η(x) should be bounded within [0, 1]

• Consider a link function g that transform η(x) into (−∞,∞), then

g
(
η(x)

)
= xTβ

• Generalized linear model (GLM)
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Motivation

• Response Y follows a Bernoulli distribution conditioning on x:

p(Y = yi|X = xi) = η(xi)
yi [1− η(xi)]

1−yi

• For Logistic regression, we use the logit link function

log
η(x)

1− η(x)
= xTβ, η(x) =

exp(xTβ)

1 + exp(xTβ)

• log p
1−p is called log-odds, and we are modeling it as a linear

function of x.
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Fitting Logistic Models

• Maximize the log-likelihood function, using the conditional
likelihood of Y given X:

ℓ(β) =

n∑
i=1

log p(yi|xi,β)

=

n∑
i=1

log
{
η(xi)

yi [1− η(xi)]
1−yi

}
=

n∑
i=1

yi log
η(xi)

1− η(xi)
+ log[1− η(xi)]

=

n∑
i=1

yix
T
iβ − log[1 + exp(xT

iβ)]
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Newton-Raphson

• Derive the first and second derivatives

• Use Newton’s method to update β by

β new = β old −
[
∂2ℓ(β)

∂β∂βT

]−1
∂ℓ(β)

∂β

∣∣∣∣
β old

where

(gradient)
∂ℓ(β)

∂β
=

n∑
i=1

yix
T
i −

n∑
i=1

exp(xT
iβ)x

T
i

1 + exp(xT
iβ)

(Hessian)
∂2ℓ(β)

∂β∂βT = −
n∑

i=1

xix
T
i η(xi)[1− η(xi)]
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Interpreting Parameters

• What is the effect of β?

• Wrong:
• Each unit increases of Xj increases the probability of Y by βj

• Correct:
• Each unit increases of Xj increases the log-odds of Y by βj
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Evaluating Classification
Models



Correct or Wrong decision?

• In hypothesis testing problems, we have the following 2× 2 table:

Accept H0 Reject H0

H0 true ✓ Type I Error
H0 false Type II Error ✓

• For classification problems, we face the same decision problems

• Instead of using the α-level (to tune), we can use different
thresholds on P (Y |X) to make the decision.
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A Motivating Example

• A new lab test is developed for detecting Covid-19 infection
based on the score obtained from a device

• If the test returns positive (the score is larger than a threshold c),
then we conclude infection.

• If the test returns negative (the score is lower than c), we conclude
no infection.

• We collect the following data from 1000 tests

Infection No Infection
Test Positive 20 70 90
Test Negative 10 900 910

30 970 1000
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Confusion Matrix

Infection No Infection
Test Positive True Positive False Positive

(TP) (FP, Type I Error)
Test Negative False Negative True Negative

(FN, Type II Error) (TN)

• One way to evaluate this model (test) is the overall accuracy

Overall Accuracy =
All Correct Decisions

All Decisions

=
TP + TN

TP + TN + FP + FN

• However, this is not always good, especially when we have
unbalanced data

12/51



Overall Accuracy

• Sometimes we can simply use the overall accuracy:

Overall Accuracy =
All Correct Decisions

All Decisions

=
TP + TN

TP + TN + FP + FN

Infection No Infection
Test Positive TP FP
Test Negative FN TN

• In our Trisomy test data, the overall accuracy is 92%.

• However, accuracy may not be very informative.
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Sensitivity and Specificity

• Sensitivity (also called “Recall”) is the defined as the true positive
rate (among the infected population, what proportion are
correctly identified by the test)

Sensitivity =
TP

TP + FN

Infection No Infection
Test Positive TP FP
Test Negative FN TN

• In our data, the sensitivity is 20
20+10 ≈ 66.7%
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Sensitivity and Specificity

• Specificity is the defined as the true negative rate (among the
non-trisomy population, what proportion are correctly identified
by the test)

Specificity =
TN

TN + FP

Infection No Infection
Test Positive TP FP
Test Negative FN TN

• In our data, the specificity is 900
900+70 ≈ 92.8%
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ROC Curve

• However, we can also alter the decision threshold c, which leads
to a different sensitivity and specificity combination

• As we alter the threshold, the two measures form an ROC
(receiver operating characteristic) curve

• x-axis: 1 − Specificity: False Positive Rate

• y-axis: Sensitively: True Negative Rate
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LDA and QDA



Motivation: Bayes Rule

• Recall that if we use the 0–1 loss as the criteria

L(f(x), y) =

{
0 if y = f(x)

1 if o.w.

• Then, the best rule we can get is

fB(x) = argmin
f

R(f) =

{
1 if η(x) > 1/2

0 if η(x) < 1/2.

• This rule fB is called the Bayes rule, and the corresponding risk
(expected loss) is the Bayes risk or Bayes error.
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Motivation: Bayes Rule

• The name of “Bayes rule” comes from understanding the optimal
rule from the Bayes prospective:

P(Y = 1|X = x) =
P(X = x|Y = 1)P(Y = 1)

P(X = x)

P(Y = 0|X = x) =
P(X = x|Y = 0)P(Y = 0)

P(X = x)
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Bayes Rule

• Treating π = P(Y = 1) and (1− π) = P(Y = 0) as prior
probabilities, and define the conditional densities of X as

f1 = P(X = x|Y = 1) and f0 = P(X = x|Y = 0).

• The Bayes rule can also be written as

fB(x) = argmin
f

R(f) =

{
1 if πf1(x) > (1− π)f0(x)

0 if πf1(x) < (1− π)f0(x).

• Note that the marginal density of X can also be written as

P(X = x) = πf1(x) + (1− π)f0(x)

although it does not play a role in the optimal decision rule.
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Bayes Rule

• The prior probabilities: P(Y = 0) and P(Y = 1)

• Reflect the prior knowledge of the likelihood of occurrence for each
class

• Can be used to make a decision without any extra knowledge

• The posterior probabilities: P(Y |X)

• The updated probabilities after observing X = x

• The Bayes decision rule combines them to achieve the minimum
risk

fB(x) = 1 if
f1(x)

f0(x)
>

1− π

π
; and 0 o.w.
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Bayes Rule

• The decision boundary can also be used to describe the optimal
rule:

{x : πf1(x) = (1− π)f0(x)}

• Linear methods for classification: the classification rules with
fB(x) being linear in x, or equivalently, classification rules with
linear decision boundaries.
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Multi-Class Problems

• In multi-class problems, y ∈ {1, . . .K}. We want to construct
classifier

f : Rp −→ {1, . . . ,K}

• The optimal rule is

fB(x) = argmax
k

P(Y = k|X = x) = argmax
k

πkfk(x)

where πk is prior probability and fk(x) is the conditional density
for class k.

• Classify x to the most probable class by comparing P(Y |X = x).
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Binary vs. Multi-Class

• We will focus on binary classifiers. Some binary classifiers can
also handel multi-classes, such as discriminate analysis (LDA,
QDA, NB), logistic regression, kNN and random forests. But for
some others, the extension is non-trivial (SVM).

• There are some naive (although may not be optimal) ways to
apply a binary classifier on a classification problem with K > 2

categories.
– Train K one-vs-other classifiers

– Train K(K − 1)/2 pairwise classifiers

Then we can combine the results to get a consensus prediction.
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Masking Problems in Linear Models

• For outcome Y , which may fall into categories 1, . . . ,K, define a
vector of indicators (Y1, . . . , YK)

Yk = 1 if Y = k

• Each vector (Y1, . . . , YK) has a single 1.

• The n training samples form an n×K indicator response matrix Y,
where each row is such an indicator vector.

• If we model each Yk separately, then this is essentially
one-vs-other

• However, we may face serious masking problems
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Masking Problems

Fitting the three-class problem using polynomials

Elements of Statistical Learning (2nd Ed.) c©Hastie, Tibshirani & Friedman 2009 Chap 4
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FIGURE 4.3. The effects of masking on linear regres-
sion in IR for a three-class problem. The rug plot at
the base indicates the positions and class membership
of each observation. The three curves in each panel are
the fitted regressions to the three-class indicator vari-
ables; for example, for the blue class, yblue is 1 for the
blue observations, and 0 for the green and orange. The
fits are linear and quadratic polynomials. Above each
plot is the training error rate. The Bayes error rate is
0.025 for this problem, as is the LDA error rate.

Degree = 1; Error = 0.33 Degree = 2, Error = 0.04

Note: LDA can avoid this problem
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Discriminant Analysis



Linear Discriminant Analysis

• The idea is to model the distribution of X in each of the classes
separately, and then use Bayes theorem to flip things around and
obtain P(Y |X = x).

• Linear Discriminant Analysis (LDA)

• Quadratic Discriminant Analysis (LDA)

• Naive Bayes (NB)
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Bayes Theorem for Classification

• As we demonstrated earlier (Bayes rules), the conditional
probability can be formulated using Bayes Theorem:

P(Y = k|X = x) =
P(X = x|Y = k)P(Y = k)

P(X = x)

=
P(X = x|Y = k)P(Y = k)∑K
l=1 P(X = x|Y = l)P(Y = l)

=
πkfk(x)∑K
l=1 πlfl(x)

where fk(x) is the conditional density function of X|Y = k, and
πk = P(Y = k) is the prior probability.
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Bayes Theorem for Classification

• The best prediction is picking the one that maximizing the
posterior

argmax
k

πkfk(x)

• LDA and QDA model fk(x) as a normal distribution
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Bayes Theorem for Classification

• Suppose we model each class density as multivariate Gaussian
N (µk,Σk), and assume that the covariance matrices are the
same across all k, i.e., Σk = Σ. Then the

fk(x) =
1

(2π)p/2|Σ|1/2
exp

[
−1

2
(x− µk)

TΣ−1(x− µk)

]
• The log-likelihood function for the conditional distribution is

log fk(x) = − log((2π)p/2|Σ|1/2)− 1

2
(x− µk)

TΣ−1(x− µk)

= − 1

2
(x− µk)

TΣ−1(x− µk) + constant
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Bayes Theorem for Classification

• Hence we just need to select the category that attains the
highest posterior density (MAP: maximum a posteriori):

f̂(x) = argmax
k

log
(
πkfk(x)

)
= argmax

k
− 1

2
(x− µk)

TΣ−1(x− µk) + log(πk)
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Interpretations of LDA

• The term (x− µk)
TΣ−1(x− µk) is simply the Mahalanobis

distance between x and the centroid µk for class k

• Classify x to the class with the closest centroid (after adjusting
the for prior)

• Special case: Σ = I (only Euclidean distance is needed)

argmax
k

− 1

2
∥x− µk∥2 + log(πk)
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Decision Boundary

• Noticing that that quadratic term can be simplified to

− 1

2
(x− µk)

TΣ−1(x− µk)

= xTΣ−1µk − 1

2
µT

kΣ
−1µk + irrelevant things

• Then the discriminant function is defined as

δk(x) = xTΣ−1µk − 1

2
µT

kΣ
−1µk + log πk

= wT
kx+ bk,

• We can calculate wk ’s and bk ’s for each class k from the data.
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Decision Boundary

• The decision boundary function between class k and l is

wT
kx+ bk = wT

l x+ bl

⇔ (wk −wl)
Tx+ (bk − bl) = 0

⇔ w̃Tx+ b̃ = 0

• Since wk = Σ−1µk and wl = Σ−1µl, the decision boundary has
the directional vector

w̃ = Σ−1(µk − µl)
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Interpretations of LDA

Elements of Statistical Learning (2nd Ed.) c©Hastie, Tibshirani & Friedman 2009 Chap 4

+

+
+

+

FIGURE 4.9. Although the line joining the cen-
troids defines the direction of greatest centroid spread,
the projected data overlap because of the covariance
(left panel). The discriminant direction minimizes this
overlap for Gaussian data (right panel).
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Parameter Estimations in LDA

• We estimate the LDA parameters from the training data
– Prior probabilities: π̂k = nk/n = n−1 ∑

k 1{yi = k}, where nk is
the number of observations in class k.

– Centroid: µ̂k = n−1
k

∑
i: yi=k xi

– Pooled covariance:

Σ̂ =
1

n−K

K∑
k=1

∑
i: yi=k

(xi − µ̂k)(xi − µ̂k)
T
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Quadratic Discriminant Analysis

• Quadratic Discriminant Analysis simply abandons the
assumption of the common covariance matrix. Hence, Σk ’s are
not equal.

• In this case, the determinant |Σk| of each covariance matrix will
be different. The MAP decision becomes

max
k

log
(
πkfk(x)

)
= max

k
− 1

2
log |Σk| −

1

2
(x− µk)

TΣ−1
k (x− µk) + log(πk)

=xTWkx+wT
kx+ bk

• This leads to quadratic decision boundary between class k and l

{x : xT(Wk −Wl)x+ (wT
k −wT

l )
Tx+ (bk − bl) = 0}
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Estimations in QDA

• We estimate the QDA parameters from the training data
– Prior probabilities: π̂k = nk/n = n−1 ∑

k 1{yi = k}, where nk is
the number of observations in class k.

– Centroid: µ̂k = n−1
k

∑
i: yi=k xi

– Sample covariance matrix for each class:

Σ̂k =
1

nk − 1

∑
i: yi=k

(xi − µ̂k)(xi − µ̂k)
T
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LDA vs. QDA

• More parameters in QDA than LDA, especially when p is large

• Both are extremely simple to implement

• Both LDA and QDA can perform well on real classification
problems

• We can include selected quadratic terms of the covariates, such
as X1X2 or X2

1 , and still perform LDA
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LDA vs. QDA

Elements of Statistical Learning (2nd Ed.) c©Hastie, Tibshirani & Friedman 2009 Chap 4
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FIGURE 4.6. Two methods for fitting quadratic
boundaries. The left plot shows the quadratic de-
cision boundaries for the data in Figure 4.1 (ob-
tained using LDA in the five-dimensional space
X1, X2, X1X2, X

2
1 , X2

2 ). The right plot shows the
quadratic decision boundaries found by QDA. The dif-
ferences are small, as is usually the case.
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Alternative Formulations



Fisher’s Criterion

• The between-class variation on those K centroid (µ1, . . .µK) is

B =

K∑
k=1

πk(µk − µ̄)(µk − µ̄)T

where µ̄ =

K∑
k=1

πkµk

• The within-class variation is just the common covariance matrix
Σ that we calculated in LDA, denote it as W.

• If we define a linear combination Z = aTX such that we want the
between-class variance is maximized relative to the within-class
variance, we maximize the Rayleigh quotient,

maximize
a

aTBa

aTWa
subject to aTWa = 1

40/51



Fisher’s Criterion

• To solve this, note that W has to be positive definite (for
sufficient large n), we write W = (W

1
2 )TW

1
2

• Define b = W
1
2 a, then a = W− 1

2 b, and the optimization problem
becomes

maximize
b

bT(W− 1
2 )TBW− 1

2 b

bTb
subject to bTb = 1

• The maximizer is simply the first eigenvector of (W− 1
2 )TBW− 1

2 .

• Recover a = W− 1
2 b, which is the first eigenvector of W−1B.

• Similarly, one can find the next direction by extracting the second
eigenvector.
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Reduced Rank LDA

• Low-dimensional structure of the data may help reduce the noise

• We may consider many different ways to reduced the rank of the
data, and perform discriminant analysis on the dimensionality
reduced space.

• Example 1 (a simple reduced-rank LDA):
• The K centroids (µ1, . . .µK) in p-dimensional input space span a

subspace of rank K − 1, denote this subspace as H

• For any point x, we can project it onto H, and perform LDA on this
reduced space

• Example 2 (PCA)
• Perform PCA on the entire data, and take the first several

eigen-vectors as the subspace H
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Discriminant Coordinates
Elements of Statistical Learning (2nd Ed.) c©Hastie, Tibshirani & Friedman 2009 Chap 4

Coordinate 1 for Training Data
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Linear Discriminant Analysis

FIGURE 4.4. A two-dimensional plot of the vowel
training data. There are eleven classes with X ∈ IR10,
and this is the best view in terms of a LDA model (Sec-
tion 4.3.3). The heavy circles are the projected mean
vectors for each class. The class overlap is consider-
able.
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FIGURE 4.11. Decision boundaries for the vowel
training data, in the two-dimensional subspace spanned
by the first two canonical variates. Note that in any
higher-dimensional subspace, the decision boundaries
are higher-dimensional affine planes, and could not be
represented as lines.
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Discriminant Analysis in Large p problems

• When p is large, QDA/LDA may not be applicable, because Σ̂−1

does not exist

• Using generalized inverse can easily overfit the data

• A warning sign: Classes are well-separated on the training data
could be meaningless for high-dimensional data

• Regularization: sparse LDA, Naive Bayes, RDA
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Sparse LDA

• Witten and Tibshirani (2011): penalized LDA

maximize
a

{aTBa+ P (|a|)} subject to aT(W +Ω)a = 1

where Ω is some matrix that makes (W +Ω) positive definite,
and P (|a|) is a penalty function over the vector |a|.

• Another approach Clemmensen et. al. (2011): similar idea with a
different objective function that makes the optimization problem
easier.
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Regularized Discriminant Analysis (RDA)

• Friedman (1989): shrink the separate covariances of QDA
toward a common covariance in LDA. Regularized covariance
matrices are

Σ̂k(α) = αΣ̂k + (1− α)Σ̂

• α ∈ [0, 1], a continuum of models between LDA and QDA, if Σ̂ is
the pooled covariance matrix used in LDA

• In practice, chose α using CV.

• We can further shrink Σk towards the diagonal covariance, with
γ ∈ [0, 1]

Σ̂k(α, γ) = αΣ̂k + (1− α)γΣ̂ + (1− α)(1− γ)σ̂2I
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Naive Bayes

• Recall that the optimal decision rule is

argmax
k

P(Y = k|X = x) = argmax
k

πkfk(x)

• We can approximate fk(x) by

fk(x) ≈
∏
j=1

fkj(xj),

meaning that each dimension of x is approximately
independently

• fkj(xj) can be estimated using histograms (discrete), or kernel
densities (continuous)
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Remarks



Logistic Regression vs. LDA

• For LDA, the log-posterior odds between class 1 and 0 are linear
in x

log
P(Y = 1|X = x)

P(Y = 0|X = x)
= log

π1

π0
− 1

2
µT

1Σ
−1µ1 +

1

2
µT

0Σ
−1µ0

+ xTΣ−1(µ1 − µ0)

= α0 + xTα

• Logistic model has linear logics by construction

log
P(Y = 1|X = x)

P(Y = 0|X = x)
= β0 + xTβ

• Are they the same estimators?
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Logistic Regression vs. LDA

• For LDA, the The linearity is a consequence of the Gaussian
assumption for the class densities, and the assumption of a
common covariance matrix.

• For logistic regression, the linearity comes by construction.

• The difference lies in how the coefficients are estimated.

• Which is more general?
– LDA assumes Gaussian distribution of X; while logistic leaves the

density of X arbitrary

• Logistic model is more general
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R Functions

• LDA and QDA: R package MASS , functions lda , qda .

• Logistic: R function glm

• General optimization: R function optim
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