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+ Classification problems
 Logistic Regression
 Evaluating Classification Models
+ LDA and QDA

* Remarks
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Classification Problems

+ Training data D,, = {z;,y:}1":
-z, € R, and y; € {0,1} (sometimes we use {—1,+1}).

+ The goal is to find a classifier
f:RP —{0,1}

+ At any target point = with outcome y, the performance of a
classifier is usually measured by 0—1 loss

0 if y=f(z)
1 if ow.

L(f(z),y) = {
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Soft vs. Hard Classification

» There are two popular approaches when modeling binary data
+ Soft classifiers

« Estimate the conditional probabilities P(Y'| X)

» Use 1{P(Y|X) > c} for classification

* e.g. logistic regression
» Hard classifiers

« Directly estimate the classification decision boundary

* e.g. svm

* Many methods are capable of doing or have been extended to
perform both
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Logistic Regression



« Directly model the probability
(@) =Py =1]X =)
* n(z) should be bounded within [0, 1]

+ Consider a link function g that transform 7 (z) into (—oo, c0), then

g(n(x)) =B

* Generalized linear model (GLM)
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» Response Y follows a Bernoulli distribution conditioning on z:
p(Y = il X = ;) = (i) [1 — na)] 7
 For Logistic regression, we use the logit link function

n(x) _ exp(z'P)
g 1= @ =20 10 = T oTs)

* log ﬁ is called log-odds, and we are modeling it as a linear
function of z.
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Fitting Logistic Models

» Maximize the log-likelihood function, using the conditional
likelihood of Y given X:

:Zlog p(yilz:, B)

i=1

= Z log {n(x)¥[1 — n(z;)] ¥}
Zyzlog ) ) —Hog[l— ( )]

- Z yiz] B — log[1 + exp(z] B)]
=1
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Newton-Raphson

» Derive the first and second derivatives

» Use Newton’s method to update 3 by

B new

_ god _ [awﬂ)]l 24(3)
a 0Bo3T B

ﬁ old

where

, oU(B) - exp(x]B)x]
d — = E E
(gradient) op pat — 1 + exp(z T,@

0B

(Hessian) agaﬁT = Zm n(xi)[1 —n(z:)]
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Interpreting Parameters

* What is the effect of 3?

» Wrong:
» Each unit increases of X increases the probability of Y by 3;

+ Correct:
« Each unit increases of X increases the log-odds of Y by 3;
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Evaluating Classification
Models




Correct or Wrong decision?

+ In hypothesis testing problems, we have the following 2 x 2 table:

Accept H Reject Hy
Hj true v Type | Error
H, false | Type Il Error v

+ For classification problems, we face the same decision problems

* Instead of using the «a-level (to tune), we can use different
thresholds on P(Y|X) to make the decision.
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A Motivating Example

* A new lab test is developed for detecting Covid-19 infection
based on the score obtained from a device

« If the test returns positive (the score is larger than a threshold c),
then we conclude infection.

« If the test returns negative (the score is lower than ¢), we conclude
no infection.

» We collect the following data from 1000 tests

Infection  No Infection
Test Positive 20 70 90
Test Negative 10 900 910
30 970 1000
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Confusion Matrix

Infection No Infection
Test Positive True Positive False Positive
(TP) (FP, Type | Error)
Test Negative False Negative True Negative
(FN, Type Il Error) (TN)

* One way to evaluate this model (test) is the overall accuracy

All Correct Decisions

All Decisions
TP+ TN

~ TP+TN+FP+FN

Overall Accuracy =

» However, this is not always good, especially when we have
unbalanced data
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Overall Accuracy

» Sometimes we can simply use the overall accuracy:

Overall Accuracy =

All Correct Decisions

All Decisions

TP+ TN

TP+

TN+ FP + FN

Infection

No Infection

Test Positive
Test Negative

TP
FN

FP
N

* In our Trisomy test data, the overall accuracy is 92%.

» However, accuracy may not be very informative.
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Sensitivity and Specificity

» Sensitivity (also called “Recall”) is the defined as the true positive
rate (among the infected population, what proportion are
correctly identified by the test)

TP

Infection | No Infection
Test Positive TP FP
Test Negative FN TN

* In our data, the sensitivity is 5225 ~ 66.7%
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Sensitivity and Specificity

 Specificity is the defined as the true negative rate (among the
non-trisomy population, what proportion are correctly identified

by the test)
i TN
Specificity = TN FP
Infection | No Infection
Test Positive TP FP
Test Negative FN TN

* In our data, the specificity is 55005 ~ 92.8%
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ROC Curve

» However, we can also alter the decision threshold ¢, which leads
to a different sensitivity and specificity combination

* As we alter the threshold, the two measures form an ROC
(receiver operating characteristic) curve
» z-axis: 1 — Specificity: False Positive Rate

» y-axis: Sensitively: True Negative Rate

Sensitivity
1 1 1 1 1

|

00 02 04 0.6 08 1.0

T T T T T T
0.0 0.2 0.4 0.6 0.8 1.0

1 - Specificity
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LDA and QDA



Motivation: Bayes Rule

* Recall that if we use the 0—1 loss as the criteria

0 if y=f(z)
1 if ow.

L(f(z),y) = {

» Then, the best rule we can get is

f5(x) = argmin R(f) =

f

1 if n(z) >1/2
0 if nx)<1/2.

 This rule fp is called the Bayes rule, and the corresponding risk
(expected loss) is the Bayes risk or Bayes error.
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Motivation: Bayes Rule

* The name of “Bayes rule” comes from understanding the optimal
rule from the Bayes prospective:

P(X = z]Y = )P(Y = 1)

PY=1X=2)=
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Bayes Rule

» Treatingm =P(Y =1)and (1 —7) = P(Y = 0) as prior
probabilities, and define the conditional densities of X as

fi=P(X=zlY =1)and fo = P(X = z|Y =0).

» The Bayes rule can also be written as

f(x) = argmin  R(f) =

{1 it 7fi(z) > (1 —m)fo(x)
f

0 if wfi(x) < (1 —m)folx).
 Note that the marginal density of X can also be written as
P(X = o) = nf1() + (1 — 1) fo(e)
although it does not play a role in the optimal decision rule.
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Bayes Rule

+ The prior probabilities: P(Y = 0) and P(Y = 1)
» Reflect the prior knowledge of the likelihood of occurrence for each
class

» Can be used to make a decision without any extra knowledge

» The posterior probabilities: P(Y'|X)
» The updated probabilities after observing X = =

» The Bayes decision rule combines them to achieve the minimum
risk

fl(:z:) 1-—-

fe(x) =1 if @) > and 0 o.w.
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Bayes Rule

» The decision boundary can also be used to describe the optimal
rule:

{z:7mfi(z) = (1 —7)fo(z)}

« Linear methods for classification: the classification rules with

fB(x) being linear in z, or equivalently, classification rules with
linear decision boundaries.
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Multi-Class Problems

* In multi-class problems, y € {1,... K'}. We want to construct
classifier

f:RP—{1,...,K}
* The optimal rule is

fe(z) = argmax P(Y = k|X = z) = argmax 7, f(z)
k k

where 7, is prior probability and fi(z) is the conditional density
for class k.

+ Classify « to the most probable class by comparing P(Y | X = z).
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Binary vs. Multi-Class

« We will focus on binary classifiers. Some binary classifiers can
also handel multi-classes, such as discriminate analysis (LDA,
QDA, NB), logistic regression, kNN and random forests. But for
some others, the extension is non-trivial (SVM).

» There are some naive (although may not be optimal) ways to
apply a binary classifier on a classification problem with K > 2
categories.

— Train K one-vs-other classifiers
— Train K (K — 1)/2 pairwise classifiers
Then we can combine the results to get a consensus prediction.
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Masking Problems in Linear Models

» For outcome Y, which may fall into categories 1,..., K, define a
vector of indicators (Y7,...,Yx)

Ye=1 if Y=k

« Each vector (Y1, ...,Yx) has a single 1.

» The n training samples form an n x K indicator response matrix Y,
where each row is such an indicator vector.

« If we model each Y}, separately, then this is essentially
one-vs-other

» However, we may face serious masking problems
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Masking Problems

Fitting the three-class problem using polynomials

A f=treccccdoscoccdbacsas 21
'y g
LY f
h‘!“
Y 3335
05 f--------1= \a#&}ij ””””
= ,3; €=
00 F-----1 e
e N
3 Y,
& ]
0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0
Degree = 1; Error = 0.33 Degree = 2, Error = 0.04

Note: LDA can avoid this problem
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Discriminant Analysis




Linear Discriminant Analysis

» The idea is to model the distribution of X in each of the classes
separately, and then use Bayes theorem to flip things around and
obtain P(Y|X = x).

* Linear Discriminant Analysis (LDA)
+ Quadratic Discriminant Analysis (LDA)

» Naive Bayes (NB)
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Bayes Theorem for Classification

» As we demonstrated earlier (Bayes rules), the conditional
probability can be formulated using Bayes Theorem:

P(X = z|Y = k)P(Y = k)
P(X =)
_ P(X =alY =k)P(Y = k)
YK P(X =gy =)P(Y =1)
_ mfi(®)
Yy mfi(@)

where fi.(z) is the conditional density function of X |Y" = k, and
7 = P(Y = k) is the prior probability.

PY =klX=2x)=
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Bayes Theorem for Classification

» The best prediction is picking the one that maximizing the
posterior

arg max 7 fx ()
k

+ LDA and QDA model fi(z) as a normal distribution
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Bayes Theorem for Classification

» Suppose we model each class density as multivariate Gaussian
N (u, Xk), and assume that the covariance matrices are the
same across all k, i.e., X, = X. Then the

1 1
exp [—=(z — ) 271 (= — pai)

)= e P

» The log-likelihood function for the conditional distribution is

log fi(z) = — log((2mP/2|211/2) = 2 (2 — )5 (& — )

1
- 5(35 — i) "2 (& — pi) + constant
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Bayes Theorem for Classification

* Hence we just need to select the category that attains the
highest posterior density (MAP: maximum a posteriori):

~

fla) = arg max log (mx fx())

1
= argmax — 3 (z — )27 (@ = i) + log(me)
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Interpretations of LDA

 The term (z — pi) 'S~ (z — py) is simply the Mahalanobis
distance between z and the centroid ;. for class &

« Classify « to the class with the closest centroid (after adjusting
the for prior)

+ Special case: ¥ = I (only Euclidean distance is needed)

1
argmax — glle = pl|® + log(my,)
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Decision Boundary

* Noticing that that quadratic term can be simplified to

1 _
- 5(55 — )" (@ — )
1

—pl X"y + irrelevant things

=257y — 2

* Then the discriminant function is defined as

1
Or(x) = TS — o S g + log my

T
=w,x + by,

« We can calculate w;,’s and b;,’s for each class k from the data.
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Decision Boundary

» The decision boundary function between class k and [ is

w{x+bk :W;rx—i—bl
& (wp—w)z+ (b —b)=0

& Wartb=0

* Since w, = X7 'u; and w; = X!y, the decision boundary has
the directional vector

W =" (pur — )
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Interpretations of LDA

FIGURE 4.9. Although the line joining the cen-
troids defines the direction of greatest centroid spread,
the projected data overlap because of the covariance
(left panel). The discriminant direction minimizes this
overlap for Gaussian data (right panel).
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Parameter Estimations in LDA

» We estimate the LDA parameters from the training data
— Prior probabilities: 7#x = ny/n =n""'3", 1{y; = k}, where ny, is
the number of observations in class k.

PR -1
— Centroid: fix =n; " 30, ) T
— Pooled covariance:

ST X i A )

k=1i:y;=k
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Quadratic Discriminant Analysis

* Quadratic Discriminant Analysis simply abandons the
assumption of the common covariance matrix. Hence, ¥;’s are
not equal.

+ In this case, the determinant |2 | of each covariance matrix will
be different. The MAP decision becomes

i log (mefu(+)

1 1 _
=max — g log 2k — §($ — k)T (@ — i) + log ()

::cTWk:E + w-,gfc + by,
 This leads to quadratic decision boundary between class k£ and [

{z: 2T (W), — W)z + (wf — w])Ta + (b — b) = 0}
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Estimations in QDA

+ We estimate the QDA parameters from the training data
— Prior probabilities: 7#x = ny/n=n""'3", 1{y; = k}, where ny, is
the number of observations in class k.

TP —1
— Centroid: fix =n; " 35, _p T

— Sample covariance matrix for each class:
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LDA vs. QDA

* More parameters in QDA than LDA, especially when p is large
» Both are extremely simple to implement

+ Both LDA and QDA can perform well on real classification
problems

* We can include selected quadratic terms of the covariates, such
as X; X, or X#, and still perform LDA
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LDA vs. QDA

FIGURE 4.6. Two methods for fitting quadratic
boundaries. The left plot shows the quadratic de-
cision boundaries for the data in Figure 4.1 (ob-
tained wusing LDA in the five-dimensional space
X1,X2, X1X0,X?,X2). The right plot shows the
quadratic decision boundaries found by QDA. The dif-
ferences are small, as is usually the case.
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Alternative Formulations




Fisher’s Criterion

» The between-class variation on those K centroid (p1, ... pux) is

B

M=

(e — ) (pr, — )7
k=1

=

where o= Z Tk
k=1

» The within-class variation is just the common covariance matrix
Y that we calculated in LDA, denote it as W.

- |f we define a linear combination Z = «" X such that we want the
between-class variance is maximized relative to the within-class
variance, we maximize the Rayleigh quotient,

.
. .. aBa . T
maximize TWa subjectto o Wa =1
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Fisher’s Criterion

+ To solve this, note that W has to be positive definite (for
sufficient large n), we write W = (Wz2)TWz

« Define b = W2, then « = W25, and the optimization problem
becomes
bT(W—2)TBW 2
bTh

maximize subjectto b'h=1

« The maximizer is simply the first eigenvector of (W—2)TBW ~=.
« Recover a = W~2b, which is the first eigenvector of W 'B.

« Similarly, one can find the next direction by extracting the second
eigenvector.
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Reduced Rank LDA

» Low-dimensional structure of the data may help reduce the noise

+ We may consider many different ways to reduced the rank of the
data, and perform discriminant analysis on the dimensionality
reduced space.

« Example 1 (a simple reduced-rank LDA):

» The K centroids (u1, ... px) in p-dimensional input space span a
subspace of rank K — 1, denote this subspace as H

» For any point x, we can project it onto H, and perform LDA on this
reduced space

« Example 2 (PCA)

« Perform PCA on the entire data, and take the first several
eigen-vectors as the subspace H
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Discriminant Coordinates

Linear Discriminant Analysis

Coordinate 2 for Training Data.

Coordinate 1 for Training Data

FIGURE 4.4. A two-dimensional plot of the vowel
training data. There are eleven classes with X € R,
and this is the best view in terms of a LDA model (Sec-
tion 4.3.3). The heavy circles are the projected mean
vectors for each class. The class overlap is consider-
able.
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Discriminant Coordinates

Canonical Coordinate 2

Canonical Coordinate 1

FIGURE 4.11. Decision boundaries for the vowel
training data, in the two-di ional subspace d
by the first two canonical variates. Note that in any
higher-dimensional subspace, the decision boundaries
are higher-dimensional affine planes, and could not be
represented as lines.
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Discriminant Analysis in Large p problems

* When p is large, QDA/LDA may not be applicable, because $-1
does not exist

 Using generalized inverse can easily overfit the data

« A warning sign: Classes are well-separated on the training data
could be meaningless for high-dimensional data

» Regularization: sparse LDA, Naive Bayes, RDA
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Sparse LDA

» Witten and Tibshirani (2011): penalized LDA
maximize {a"Ba + P(|a|)} subjectto a'(W 4 Q)a =1

where 2 is some matrix that makes (W + Q) positive definite,
and P(|a|) is a penalty function over the vector |a].

 Another approach Clemmensen et. al. (2011): similar idea with a
different objective function that makes the optimization problem
easier.
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Regularized Discriminant Analysis (RDA)

 Friedman (1989): shrink the separate covariances of QDA
toward a common covariance in LDA. Regularized covariance
matrices are

~

Sk(e@) =aSy 4+ (1—a)S

* «a € [0,1], a continuum of models between LDA and QDA, if & is
the pooled covariance matrix used in LDA

* In practice, chose « using CV.

» We can further shrink ¥, towards the diagonal covariance, with
v € 10,1]

~

Sk(e,y) =aSe + (1 —a)yS + (1 — a)(1 — )31

47/51



Naive Bayes

» Recall that the optimal decision rule is
argmax P(Y = k| X = z) = arg max 7y, f ()
k k
» We can approximate fi(z) by

fe(@) ~ [ fri(as),
j=1

meaning that each dimension of x is approximately
independently

* frx;(x;) can be estimated using histograms (discrete), or kernel
densities (continuous)
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Remarks




Logistic Regression vs. LDA

» For LDA, the log-posterior odds between class 1 and 0 are linear
inx
PY=1X=xz)
log =2 — Jog — — —pI %" 155
og P(Y:O|X=x) Og I‘Ll l‘l’l + IJ'O I‘LO
+ xTE (11 — o)
= g + xToz

* Logistic model has linear logics by construction

PY =1|X = 1) T
10gm—50+$ B

* Are they the same estimators?
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Logistic Regression vs. LDA

» For LDA, the The linearity is a consequence of the Gaussian
assumption for the class densities, and the assumption of a
common covariance matrix.

+ For logistic regression, the linearity comes by construction.
» The difference lies in how the coefficients are estimated.

« Which is more general?
— LDA assumes Gaussian distribution of X; while logistic leaves the
density of X arbitrary

* Logistic model is more general
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» LDA and QDA: R package MASS, functions lda, qda.
* Logistic: R function glm

 General optimization: R function optim
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