STAT 542: Statistical Learning

Boosting

Ruoging Zhu, Ph.D. <rgzhu@illinois.edu>
Course Website: https:/teazrq.github.io/stat542/
April 10, 2022

Department of Statistics
University of lllinois at Urbana-Champaign

1/34


mailto:rqzhu@illinois.edu
https://teazrq.github.io/stat542/

» AdaBoost
« Training error bound

» Gradient boosting

2/34



AdaBoost



 Consider producing a sequence of learners:

Fr(z) =) fi(x)
=il

* How to train each f;(z)? At the ¢-th iteration, given perviously
estimated f1, ..., f;—1, we estimate a new function h(z) to
minimize the loss:

m}jni L(yi, ;Z_ll fr(zs) + h(l’z))

* Instead of using the entire h(x), we only use a small “fraction” of
it, and add a;h(z) to the current model. Then proceed to the next
iteration.

3/34



Boosting is an additive model, but its different from generalized
additive model, in which each weak learner only involves one
variable, and we fit p of such functions. In boosting, each f;(x)
can be very flexible, and we may fit a large number of functions.

Boosting is also different from random forests, another additive
model. In random forests, each tree is generated independently,
so they can’t borrow information from each other.

AdaBoost (Freund and Schapire, 1997) is a special case of this
framework with Exponential loss for classification.

For this setting, we use labels y; € {—1,1}.

4/34



AdaBoost: algorithm

1. Initiate subject weights w'") = 1/n, i =1,2,... n.

2. Fort=1to T, repeat (a) — (d)
(a) Fit a classifier f:(x) € {—1,1} to the training data, with individual
weights w'"

Pt

(b) Compute the training error at ¢
e = w" My # fi(wi)}

(c) Compute

176/

= ll
ay = — log
! 2 f—, €t

5/34



AdaBoost: algorithm

2. continued
(d) Update weights

(t)
w.:
wtY = —i expl—auyi fel(@:)],
Zy

(t+1

where Z; is a normalization factor to keep """ a distribution:

7, = Z wgt) exp[—ays fr(x:)],

=il

3. Output the final model

Fr(z) = Z o fe(z)
t=1

And the classification rule: sign(Fr(x))

6/34



* Let’s look at an example with the following data
+ At each iteration, we build a tree model f;(x) with just one split

* The final model is stacked with all tree models

R X o R X o
X X X X
BN ©) BN O
X (0] X 8
X X
S (@) S @,
O O
O‘U UI2 0'4 UIS 0'5 1‘0 O‘U UI2 0'4 UIS 0'5 1‘0

7/34



+ At the first iteration, the tree splits at 0.25 for X;

» This makes the three positive cases on the right hand side to

increase their weights

04

0.2

00

04

0.2

00

8/34



At the second iteration, the tree splits at 0.65 for X,

 This further adjusts the weights, along with calculating «; at each
step.

02
6

02
o

0.0
0.0

9/34



+ At the second iteration, the tree splits at 0.85 for X

 This produces the final model:

Fs(z) = 0.4236 - f1(z) + 0.6496 - fo(x) 4 0.9229 - f3(x)

s X E=) s % O
X X X X
3 a 3 O
X o X o
o o
3 3
X x
S o S &
a O

o o
E E

0.0 02 04 06 08 1.0 0.0 02 04 06 08 1.0

10/34



AdaBoost: intuition

+ At the initial step, we treat all subject with equal weight

+ Learn a classifier f;(x) and inspect which subjects got
mis-classified.

» Put more weights on the mis-classified subjects for the next
iteration

+ Add « fi(x) to the existing model and train the next iteration
using the updated weights

11/34



AdaBoost: intuition

* Why o is choosing this way «; = § log 1=%4?

« Why the weak classifier is chosen to minimize the weighted
error?

+ What can we say about the performance of the final model Fr(z)

12/34



Training Error Bound




The Subject Weights

 Let’s start with analyzing the weight after the final iteration:

1
ng'H) = Z—u,'ET) exp|—auy; fr(x;))
TP

* Note that for ng), we can also further back-track it into 7' — 1.

1 _
Ty _ ~ wZ(T b expl—ay; fr—1(x;)]
T—1

(
w,

* Hence, we can track this all the way back to the first iteration

13/34



The Subject Weights

 This gives

T
m+y_ Lo o
v = g L ewlewii@]

1 19
Zi - Zrn E exp[—ouyi fi(@i)]

1 1 .
= mﬁeXP [ —Yi z(lz/_]t/<.l,,j)]

t=1

« Note that 5"/ | o, f,(,) is the just the final model at the T*-th
iteration, i.e., Frr(z;).

14/34



The Subject Weights

* Noticing that the weights sum up to 1, we have

n

= Z wz(T+1) ZT . Zexp{ —y; Fr(x }

g=il

. or
1 n
7y Ty — EZGXP{ — yiFr(w:) }
i=1

+ On the right-hand side, it is the exponential loss.

15/34



The Exponential Loss

 Let’s check some facts:
+ Correctly classified: sign(y) = sign(f(z)), and exp[—yf(x)] > 0

« Incorrectly classified: sign(y) = —sign(f(z)) the exp[—yf(z)] > 1

* Hence, the exponential loss is larger than 0/1 loss:
Zy---Zp

—Zexp —yiFr(x )}

> o Z Hy; # Fr(z;)}

i=1

16/34



« On the other hand, we can further break down each Z,

* Notice that f;(z;) is a classification model with output 1 or —1,
this either matches or not matches y;:

Z, =Y w® expl-ay: fu(x:)]

=1

= Z w eXp —y] Z w expat

yi=ft(z:) yi# fe(xi)

eXp Z w +expat Z w

yt—ft(ml) yt?'sft(zz)

17/34



By our definition,
€ = ngt)l{yi # fi(zi)}
is the proportion of weights for mis-classified samples.
* Hence,
Zy = (1 — &) exp|—ay] + € explay]

+ Since we want to minimize Z; - - - Z;, we can simply minimize Z;
by choosing «;

18/34



» Take a derivative with respect to «;, we have
—(1 — &) exp[—ay] + ez explay] =0

 This gives

11 I—Et
= < 10
= 2 & €t

* And plug this back into Z,
Zt =5 Et(]. — Et)

* Since €,(1 — ¢;) can only attain maximum of 1/4, Z, must be
smaller than 1. And Z; - - - Z; should converge to 0.

19/34



The Training Error

* Alternatively, if we let v, = % — ¢; as the improvement from a
random model

Zt =7 Et(l *Et)

=147

<exp [ - 29{]
* The last equation uses the Taylor expansion that

exp[—4’yﬂ =1—4y2 +--

20/34



The Training Error

» Hence, the AdaBoost training error is bounded above by

n

Training Error = " 1{y; # sign(Fr(z:))}

i=1

= exp[—yi # Fr(z;)]
3=il

=7, Zp
T
Sexp[—2) 7]
t=1
— 0

as long as f:(x) at each iteration ¢t is better than random guess.

21/34



» The Adaboost outputs a classifier Frr(z) with small testing error?
No. We need to tune 7. Carefull — You can easily overfit.

* The training error of Fr(x) decreases w.r.t. T? No. Its only the
upper bound of 0/1 training error
— After each iteration, Adaboost decreases a particular upper-bound
of the 0/1 training error. So in a long run, the training error is going
to zero, but not necessarily monotonically.

+ We can use a classifier that is worse than random guessing?
Yes. The reverse of that classier can be used (a; < 0)

* In practice, a classification tree model is used as the weak
learner.

22/34



» We may also roughly calculate the estimated probability

+ Consider the (upper bound) exponential loss E(exp{—yF(x)}),
which is

e @ P =1jz) + @ PY = —1z)
» The best F'(z) that minimize this expectation should be
—e F@PpY =1|z) + @ PY = -1jz) =0

* This leads to

23/34



AdaBoost

0.8 1.0
|

Training Error
0.6

0.4

Exponential Loss

0.2

Misclassification Rate

Boosting Iterations

24/34



R implementation

* Use R package gbm : function gbm
* Tuning parameters:
» Specify distribution = “adaboost”
» n.trees controls the number of iterations 7'

« shrinkage: further set a shrinkage factor on each f;(z). The
default is 0.01. The original AdaBoost uses 1, however, can be less
stable. A small value of this will require a large number of trees.

* bag.fraction: each f;(z) uses a bootstrapped sample. If set to
< 1, two different runs will produce slightly different models

« cv.folds: number of cross validations

 Other parameters to consider: interaction.depth =1 means
stumps (additive model), > 1 allows interations

25/34



An Example

#of Iterations = 1

# of Iterations = 3

T T T T T T T T T T T T T T T T T
00 02 04 05 08 10 00 02 04 06 08 10 00 02 04 06 08 10
#of Iterations = 4 #of Iterations = 16 30
T T T T T T T T T T T T T T T T T T
00 02 04 05 08 10 00 02 04 06 o8 10 00 02 04 06 08 10

26/34



Gradient Boosting




Forward Stage-wise Additive Model

 In more general framework, consider additive structure:

7
FPr(z) = Zatf(x§ 0;)

* Fit model by minimizing the loss function

n

min L(ys, Fr(z;))

{atvet}T:1 i=1

* We may choose
» Loss function L, suitable for the problem

» Base learner f(z;6) with parameter 0, such as linear, tree, etc.

27/34



Forward Stage-wise Additive Model

« It is difficult to minimize over all {ay, 0;}1 ;.

* Instead, we do this in a stage-wise fashion. (recall the
connection between Lasso and stage-wise regression)

» The algorithm:
(1) Set Fy(z) =0

(2) Fort=1,...,T
» Choose (at, 8¢) to minimize the loss

min > L(yi, Fio1(m:) + af (i3 6))
’ i=1

» Update Fy(z) = Fi—1(x) + ai f(x; 0¢)

28/34



Forward Stage-wise Additive Model

» AdaBoost is forward stage-wise using exponential loss.

+ It doesn’t pick an optimal f(x;0) at each step: the tree model is
not optimized, we just need some model that is better than
random.

+ Only the step size «, is optimized at each ¢ given the fitted
f(x;6y)

29/34



Forward Stage-wise Additive Model

» Another example is the forward stage-wise linear regression
» For each step we use a single variable linear model:
f(z,j) = sign(Cor(X;,r)) X,
« ristheresidual, as r; = y; — Fr—1(x)
 jis the index that has the largest absolute correlation with r

+ Then we give a very small step size o4, say, a; = 107°, and with
sign equal to the correlation between X;

+ Fi(x) is almost equivalent to the Lasso solution path (as ¢
changes)

30/34



An Alternative View

* r; is in fact the gradient to the squared-error loss:

o [8 (yz - F(xz))Q

O F(x;) ] F(z)=F,_1(z;)

» We then fit the weak leaner f;(z) to the residuals

+ Update the fitted model F;

31/34



An Alternative View

« This can be generalized into any loss function L

At each iteration ¢, calculate “pseudo-residuals”, i.e., the negative
gradient for each observation

, [aL(m, F(m))}
it — — | =
8F($1) F(z:)=F;—1(x:)

* Fit fi(x, 8;) to pseudo-residual g;;'s

» Search for a step length

ap = arg min Z L(yi, Feo1(zi) + af (x5 6¢))

« .
3=l

» Update Fi(x) = Fr_1(z) + ar f(x; 0;)

32/34



Gradient Boosting

* Hence, the only change when modeling different outcomes is to
choose the loss function, and derive the pseudo-residuals

Setting Loss Negative Gradient
Regression | 1(y— /() | v — /(z:)
Regression | |y~ f(z)| | sign(y: — f(x:))
Classification Deviance yi — p(x;)

« For gradient boosting using CART as base classifier, we can

make it more sophisticated by optimizing «; at each terminal
node

33/34



R Implementation

» Boosting is prone to over-fitting

* Fit a large number of iterations n.trees, then select T" using CV
or test set.

* Itis better to take small steps: shrinkage = 0.01 as default

» Use gbm package by specifying the distribution:
» “gaussian”, “bernoulli”, “laplace”, “huberized”, “multinomial”, etc.

34/34



	AdaBoost
	Training Error Bound
	Gradient Boosting

