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Boosting

• AdaBoost

• Training error bound

• Gradient boosting
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AdaBoost



Boosting

• Consider producing a sequence of learners:

FT (x) =

T∑
t=1

ft(x)

• How to train each ft(x)? At the t-th iteration, given perviously
estimated f1, . . . , ft−1, we estimate a new function h(x) to
minimize the loss:

min
h

n∑
i=1

L
(
yi,

t−1∑
k=1

fk(xi) + h(xi)
)

• Instead of using the entire h(x), we only use a small “fraction” of
it, and add αth(x) to the current model. Then proceed to the next
iteration.
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Boosting

• Boosting is an additive model, but its different from generalized
additive model, in which each weak learner only involves one
variable, and we fit p of such functions. In boosting, each ft(x)

can be very flexible, and we may fit a large number of functions.

• Boosting is also different from random forests, another additive
model. In random forests, each tree is generated independently,
so they can’t borrow information from each other.

• AdaBoost (Freund and Schapire, 1997) is a special case of this
framework with Exponential loss for classification.

• For this setting, we use labels yi ∈ {−1, 1}.
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AdaBoost: algorithm

1. Initiate subject weights w
(1)
i = 1/n, i = 1, 2, . . . , n.

2. For t = 1 to T , repeat (a) – (d)
(a) Fit a classifier ft(x) ∈ {−1, 1} to the training data, with individual

weights w
(t)
i .

(b) Compute the training error at t

ϵt =
∑
i

w
(t)
i 1{yi ̸= ft(xi)}

(c) Compute

αt =
1

2
log

1− ϵt
ϵt

...
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AdaBoost: algorithm

2. continued
(d) Update weights

w
(t+1)
i =

w
(t)
i

Zt
exp[−αtyift(xi)],

where Zt is a normalization factor to keep w
(t+1)
i a distribution:

Zt =

n∑
i=1

w
(t)
i exp[−αtyift(xi)],

3. Output the final model

FT (x) =

T∑
t=1

αtft(x)

And the classification rule: sign(FT (x))
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Example

• Let’s look at an example with the following data

• At each iteration, we build a tree model ft(x) with just one split

• The final model is stacked with all tree models
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Example

• At the first iteration, the tree splits at 0.25 for X1

• This makes the three positive cases on the right hand side to
increase their weights
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Example

• At the second iteration, the tree splits at 0.65 for X2

• This further adjusts the weights, along with calculating αt at each
step.
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Example

• At the second iteration, the tree splits at 0.85 for X1

• This produces the final model:

F3(x) = 0.4236 · f1(x) + 0.6496 · f2(x) + 0.9229 · f3(x)
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AdaBoost: intuition

• At the initial step, we treat all subject with equal weight

• Learn a classifier ft(x) and inspect which subjects got
mis-classified.

• Put more weights on the mis-classified subjects for the next
iteration

• Add αtft(x) to the existing model and train the next iteration
using the updated weights
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AdaBoost: intuition

• Why αt is choosing this way αt =
1
2 log

1−ϵt
ϵt

?

• Why the weak classifier is chosen to minimize the weighted
error?

• What can we say about the performance of the final model FT (x)
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Training Error Bound



The Subject Weights

• Let’s start with analyzing the weight after the final iteration:

w
(T+1)
i =

1

ZT
w

(T )
i exp[−αtyifT (xi)]

• Note that for w(T )
i , we can also further back-track it into T − 1.

w
(T )
i =

1

ZT−1
w

(T−1)
i exp[−αtyifT−1(xi)]

• Hence, we can track this all the way back to the first iteration
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The Subject Weights

• This gives

w
(T+1)
i =

1

Z1 · · ·ZT
w

(1)
i

T∏
t=1

exp[−αtyift(xi)]

=
1

Z1 · · ·ZT

1

n

T∏
t=1

exp[−αtyift(xi)]

=
1

Z1 · · ·ZT

1

n
exp

[
− yi

T∑
t=1

αtft(xi)
]

• Note that
∑T

t=1 αtft(xi) is the just the final model at the T -th
iteration, i.e., FT (xi).
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The Subject Weights

• Noticing that the weights sum up to 1, we have

1 =

n∑
i=1

w
(T+1)
i =

1

Z1 · · ·ZT

1

n

n∑
i=1

exp
{
− yiFT (xi)

}
• or

Z1 · · ·ZT =
1

n

n∑
i=1

exp
{
− yiFT (xi)

}
• On the right-hand side, it is the exponential loss.
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The Exponential Loss

• Let’s check some facts:
• Correctly classified: sign(y) = sign(f(x)), and exp[−yf(x)] > 0

• Incorrectly classified: sign(y) = −sign(f(x)) the exp[−yf(x)] > 1

• Hence, the exponential loss is larger than 0/1 loss:

Z1 · · ·ZT

=
1

n

n∑
i=1

exp
{
− yiFT (xi)

}
>

1

n

n∑
i=1

1{yi ̸= FT (xi)}
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The Zt’s

• On the other hand, we can further break down each Zt

• Notice that ft(xi) is a classification model with output 1 or −1,
this either matches or not matches yi:

Zt =

n∑
i=1

w
(t)
i exp[−αtyift(xi)]

=
∑

yi=ft(xi)

w
(t)
i exp[−αt] +

∑
yi ̸=ft(xi)

w
(t)
i exp[αt]

= exp[−αt]
∑

yi=ft(xi)

w
(t)
i + exp[αt]

∑
yi ̸=ft(xi)

w
(t)
i
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The Zt’s

• By our definition,

ϵt =
∑
i

w
(t)
i 1

{
yi ̸= ft(xi)

}
is the proportion of weights for mis-classified samples.

• Hence,

Zt = (1− ϵt) exp[−αt] + ϵt exp[αt]

• Since we want to minimize Z1 · · ·Zt, we can simply minimize Zt

by choosing αt
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The Zt’s

• Take a derivative with respect to αt, we have

−(1− ϵt) exp[−αt] + ϵt exp[αt] = 0

• This gives

αt =
1

2
log

1− ϵt
ϵt

• And plug this back into Zt

Zt = 2
√

ϵt(1− ϵt)

• Since ϵt(1− ϵt) can only attain maximum of 1/4, Zt must be
smaller than 1. And Z1 · · ·Zt should converge to 0.
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The Training Error

• Alternatively, if we let γt = 1
2 − ϵt as the improvement from a

random model

Zt =2
√
ϵt(1− ϵt)

=
√
1− 4γ2

t

≤ exp
[
− 2γ2

t

]
• The last equation uses the Taylor expansion that

exp
[
− 4γ2

t

]
= 1− 4γ2

t + · · ·
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The Training Error

• Hence, the AdaBoost training error is bounded above by

Training Error =
n∑

i=1

1
{
yi ̸= sign(FT (xi))

}
=

n∑
i=1

exp
[
− yi ̸= FT (xi)

]
=Z1 · · ·ZT

≤ exp
[
− 2

T∑
t=1

γ2
t

]
→ 0

as long as ft(x) at each iteration t is better than random guess.
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Remarks

• The Adaboost outputs a classifier FT (x) with small testing error?
No. We need to tune T . Careful! — You can easily overfit.

• The training error of FT (x) decreases w.r.t. T? No. Its only the
upper bound of 0/1 training error

– After each iteration, Adaboost decreases a particular upper-bound
of the 0/1 training error. So in a long run, the training error is going
to zero, but not necessarily monotonically.

• We can use a classifier that is worse than random guessing?
Yes. The reverse of that classier can be used (αt < 0)

• In practice, a classification tree model is used as the weak
learner.
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Remarks

• We may also roughly calculate the estimated probability

• Consider the (upper bound) exponential loss E(exp{−yF (x)}),
which is

e−F (x)P (Y = 1|x) + eF (x)P (Y = −1|x)

• The best F (x) that minimize this expectation should be

−e−F (x)P (Y = 1|x) + eF (x)P (Y = −1|x) = 0

• This leads to

F (x) =
1

2
log

P(y = 1|x)
P(y = −1|x)

P(y = 1|x) = e2F (x)

1 + e2F (x)
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AdaBoost

Elements of Statistical Learning (2nd Ed.) c©Hastie, Tibshirani & Friedman 2009 Chap 10
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FIGURE 10.3. Simulated data, boosting with stumps:
misclassification error rate on the training set, and av-

erage exponential loss: (1/N)
PN

i=1 exp(−yif(xi)). Af-
ter about 250 iterations, the misclassification error is
zero, while the exponential loss continues to decrease.
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R implementation

• Use R package gbm : function gbm

• Tuning parameters:
• Specify distribution = “adaboost”

• n.trees controls the number of iterations T

• shrinkage : further set a shrinkage factor on each ft(x). The
default is 0.01. The original AdaBoost uses 1, however, can be less
stable. A small value of this will require a large number of trees.

• bag.fraction : each ft(x) uses a bootstrapped sample. If set to
< 1, two different runs will produce slightly different models

• cv.folds : number of cross validations

• Other parameters to consider: interaction.depth = 1 means
stumps (additive model), > 1 allows interations
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An Example
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Forward Stage-wise Additive Model

• In more general framework, consider additive structure:

FT (x) =

T∑
t=1

αtf(x;θt)

• Fit model by minimizing the loss function

min
{αt,θt}T

t=1

n∑
i=1

L
(
yi, FT (xi)

)
• We may choose

• Loss function L, suitable for the problem

• Base learner f(x;θ) with parameter θ, such as linear, tree, etc.
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Forward Stage-wise Additive Model

• It is difficult to minimize over all {αt,θt}Tt=1.

• Instead, we do this in a stage-wise fashion. (recall the
connection between Lasso and stage-wise regression)

• The algorithm:
(1) Set F0(x) = 0

(2) For t = 1, . . . , T

• Choose (αt,θt) to minimize the loss

min
α,θ

n∑
i=1

L
(
yi, Ft−1(xi) + αf(xi;θ)

)
• Update Ft(x) = Ft−1(x) + αtf(x;θt)
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Forward Stage-wise Additive Model

• AdaBoost is forward stage-wise using exponential loss.

• It doesn’t pick an optimal f(x;θ) at each step: the tree model is
not optimized, we just need some model that is better than
random.

• Only the step size αt is optimized at each t given the fitted
f(x;θt)
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Forward Stage-wise Additive Model

• Another example is the forward stage-wise linear regression

• For each step we use a single variable linear model:

f(x, j) = sign
(
Cor(Xj , r)

)
Xj

• r is the residual, as ri = yi − Ft−1(xi)

• j is the index that has the largest absolute correlation with r

• Then we give a very small step size αt, say, αt = 10−5, and with
sign equal to the correlation between Xj

• Ft(x) is almost equivalent to the Lasso solution path (as t

changes)
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An Alternative View

• ri is in fact the gradient to the squared-error loss:

rit = −

[
∂
(
yi − F (xi)

)2
∂ F (xi)

]
F (xi)=Ft−1(xi)

• We then fit the weak leaner ft(x) to the residuals

• Update the fitted model Ft
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An Alternative View

• This can be generalized into any loss function L

• At each iteration t, calculate “pseudo-residuals”, i.e., the negative
gradient for each observation

git = −
[
∂L(yi, F (xi))

∂F (xi)

]
F (xi)=Ft−1(xi)

• Fit ft(x,θt) to pseudo-residual git’s

• Search for a step length

αt = argmin
α

n∑
i=1

L
(
yi, Ft−1(xi) + αf(xi;θt)

)
• Update Ft(x) = Ft−1(x) + αtf(x;θt)
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Gradient Boosting

• Hence, the only change when modeling different outcomes is to
choose the loss function, and derive the pseudo-residuals

Setting Loss Negative Gradient
Regression 1

2 (y − f(x))2 yi − f(xi)

Regression |y − f(x)| sign(yi − f(xi))

Classification Deviance yi − p(xi)

• For gradient boosting using CART as base classifier, we can
make it more sophisticated by optimizing αt at each terminal
node
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R Implementation

• Boosting is prone to over-fitting

• Fit a large number of iterations n.trees , then select T using CV
or test set.

• It is better to take small steps: shrinkage = 0.01 as default

• Use gbm package by specifying the distribution:
• “gaussian”, “bernoulli”, “laplace”, “huberized”, “multinomial”, etc.

34/34


	AdaBoost
	Training Error Bound
	Gradient Boosting

